Image Segmentation of a Sewer Based on Deep Learning

卷积神经网络 深度学习 人工智能 管道(软件) 分割 计算机科学 人工神经网络 领域(数学) 图像分割 模式识别(心理学) 图像(数学) 管道运输 像素 计算机视觉 工程类 数学 环境工程 纯数学 程序设计语言
作者
Min He,Qinnan Zhao,Huan-Huan Gao,Xinying Zhang,En-Min Zhou
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:14 (11): 6634-6634 被引量:4
标识
DOI:10.3390/su14116634
摘要

An accurate assessment of the type and extent of sewer damage is an important prerequisite for maintenance and repair. At present, distinguishing drainage pipe defect types in the engineering field mainly relies on the human eye, which is time consuming, labor intensive, and subjective. Some studies have used deep learning to classify the types of pipe defects, but this method can only identify one main pipe defect. However, sometimes a combination of defects, such as corrosion and precipitation on a section of pipe wall, can be classified as one category by picture classification, which is significantly different from the reality. Furthermore, the deep learning method for defect classification is unable to pinpoint the precise location and severity of a defect or estimate the number of flaws and the cost of maintenance and repair. Therefore, an image segmentation method based on deep convolutional neural networks is proposed to achieve pixel-level image segmentation of defect regions while classifying pipe defects. Compared with the deep learning network for defect classification, it can segment a variety of defects and reduce the number of samples, which is convenient for defect measurement. First, the image defect locations of seven typical defects were manually labeled to create the dataset. Then, a model based on the SegNet network was used to label defect areas automatically in an image. The pipeline image dataset was used to test the previously trained model using the CamVid dataset. Finally, the model was applied to drainage pipe network images that were provided by periscope and closed-circuit television inspection cameras, and the pixel accuracy of image segmentation reached 80%. From the results, it can be concluded that image segmentation and annotation technology based on deep learning is applicable to sewer defect detection. The identification results of pipeline defects were accurate. The SegNet model is a reliable method for image analysis of pipeline defects, which can accurately evaluate the type and degree of sewer damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dritsw应助biubiudididi采纳,获得10
1秒前
1秒前
沉默发布了新的文献求助10
2秒前
压缩完成签到 ,获得积分10
2秒前
2秒前
Jenny完成签到,获得积分10
3秒前
科研通AI5应助胡宇采纳,获得10
3秒前
3秒前
小蘑菇应助12345采纳,获得20
4秒前
泡沫完成签到,获得积分10
4秒前
5秒前
jiao完成签到,获得积分10
5秒前
努力退休小博士完成签到 ,获得积分10
6秒前
萧衍发布了新的文献求助10
6秒前
985211完成签到,获得积分20
7秒前
wyk完成签到,获得积分10
9秒前
专注巨人发布了新的文献求助10
9秒前
溪夕er完成签到,获得积分10
10秒前
郭泓嵩完成签到,获得积分10
13秒前
及禾应助zzf采纳,获得10
13秒前
研友_LJGoXn完成签到,获得积分10
14秒前
14秒前
威武忆山完成签到 ,获得积分10
15秒前
专注巨人完成签到,获得积分10
15秒前
15秒前
吉路完成签到,获得积分10
16秒前
16秒前
Alina_he完成签到,获得积分10
16秒前
苹果冬莲完成签到,获得积分10
17秒前
007完成签到,获得积分10
18秒前
18秒前
早睡早起的安完成签到,获得积分10
19秒前
123发布了新的文献求助10
19秒前
Alina_he发布了新的文献求助10
19秒前
dart1023发布了新的文献求助10
19秒前
20秒前
20秒前
研友_ngkyGn应助烧酒采纳,获得10
21秒前
上官若男应助正太低音炮采纳,获得30
21秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966045
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157819
捐赠科研通 3245924
什么是DOI,文献DOI怎么找? 1793233
邀请新用户注册赠送积分活动 874278
科研通“疑难数据库(出版商)”最低求助积分说明 804304