Image Segmentation of a Sewer Based on Deep Learning

卷积神经网络 深度学习 人工智能 管道(软件) 分割 计算机科学 人工神经网络 领域(数学) 图像分割 模式识别(心理学) 图像(数学) 管道运输 像素 计算机视觉 工程类 数学 环境工程 纯数学 程序设计语言
作者
Min He,Qinnan Zhao,Huan-Huan Gao,Xinying Zhang,En-Min Zhou
出处
期刊:Sustainability [MDPI AG]
卷期号:14 (11): 6634-6634 被引量:4
标识
DOI:10.3390/su14116634
摘要

An accurate assessment of the type and extent of sewer damage is an important prerequisite for maintenance and repair. At present, distinguishing drainage pipe defect types in the engineering field mainly relies on the human eye, which is time consuming, labor intensive, and subjective. Some studies have used deep learning to classify the types of pipe defects, but this method can only identify one main pipe defect. However, sometimes a combination of defects, such as corrosion and precipitation on a section of pipe wall, can be classified as one category by picture classification, which is significantly different from the reality. Furthermore, the deep learning method for defect classification is unable to pinpoint the precise location and severity of a defect or estimate the number of flaws and the cost of maintenance and repair. Therefore, an image segmentation method based on deep convolutional neural networks is proposed to achieve pixel-level image segmentation of defect regions while classifying pipe defects. Compared with the deep learning network for defect classification, it can segment a variety of defects and reduce the number of samples, which is convenient for defect measurement. First, the image defect locations of seven typical defects were manually labeled to create the dataset. Then, a model based on the SegNet network was used to label defect areas automatically in an image. The pipeline image dataset was used to test the previously trained model using the CamVid dataset. Finally, the model was applied to drainage pipe network images that were provided by periscope and closed-circuit television inspection cameras, and the pixel accuracy of image segmentation reached 80%. From the results, it can be concluded that image segmentation and annotation technology based on deep learning is applicable to sewer defect detection. The identification results of pipeline defects were accurate. The SegNet model is a reliable method for image analysis of pipeline defects, which can accurately evaluate the type and degree of sewer damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
才下眉头完成签到,获得积分10
1秒前
1秒前
米子完成签到,获得积分10
1秒前
1秒前
3秒前
Zz完成签到 ,获得积分10
3秒前
5秒前
Foremelon发布了新的文献求助10
6秒前
guantlv发布了新的文献求助10
6秒前
7秒前
小捣腾发布了新的文献求助10
7秒前
7秒前
木盈发布了新的文献求助10
8秒前
Haisenky发布了新的文献求助10
9秒前
9秒前
li应助今天也要好好学习采纳,获得20
10秒前
大模型应助平淡夏云采纳,获得50
10秒前
11秒前
上官若男应助张光光采纳,获得10
11秒前
钟离的摩拉完成签到,获得积分10
11秒前
Jenny发布了新的文献求助10
12秒前
舒服的莞发布了新的文献求助20
13秒前
天真的铭发布了新的文献求助10
13秒前
木盈完成签到,获得积分10
13秒前
14秒前
努力发布了新的文献求助10
15秒前
楼思远发布了新的文献求助10
15秒前
17秒前
17秒前
鱼鱼鱼完成签到 ,获得积分10
17秒前
楠楠给楠楠的求助进行了留言
19秒前
梓泽丘墟应助KK采纳,获得10
19秒前
小捣腾完成签到,获得积分10
21秒前
22秒前
22秒前
香蕉觅云应助LWX采纳,获得10
23秒前
guantlv完成签到,获得积分10
24秒前
24秒前
27秒前
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153169
求助须知:如何正确求助?哪些是违规求助? 2804457
关于积分的说明 7859169
捐赠科研通 2462280
什么是DOI,文献DOI怎么找? 1310725
科研通“疑难数据库(出版商)”最低求助积分说明 629377
版权声明 601794