清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Crop pests and diseases recognition using DANet with TLDP

学习迁移 人工智能 计算机科学 卷积神经网络 深度学习 机器学习 模式识别(心理学) 领域(数学) 上下文图像分类 图像(数学) 数学 纯数学
作者
Shuli Xing,Hyo Jong Lee
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:199: 107144-107144 被引量:20
标识
DOI:10.1016/j.compag.2022.107144
摘要

• A more comprehensive image dataset of crop pests and diseases (CPD) was created. • Transfer learning based on the CPD image dataset (TLDP) was compared with ImageNet pre-training. • A novel Decoupling-and-Attention network was proposed to further improve the accuracy of TLDP. • DANet trained with the TLDP method achieved the highest classification accuracy on various open pest and disease. Pests and diseases are the two primary reasons for poor crop yields. Farmers have traditionally relied on manual methods to identify pests and diseases, which is time-consuming and costly. The Internet and pervasiveness of camera-enabled mobile devices, however, have made image acquisition more convenient and cheaper than ever before, and have launched a wave of research into how to use deep learning models to recognize pests and diseases in field. However, the datasets used in these studies were customized for only one or a few crop types. ImageNet pre-trained models were usually adopted to obtain high accuracy, regardless of the attributes of the target image datasets. A more comprehensive image dataset of crop pests and diseases was created. Transfer learning based on this disease and pest image dataset (TLDP) was compared with ImageNet pre-training. From experiments, we observed that TLDP has a similar effect to ImageNet pre-training. In addition, the performance of transfer learning largely depended on model performance on the source image dataset. To further improve the accuracy of TLDP, a novel convolutional neural network backbone called Decoupling-and-Attention network (DANet) was developed. DANet trained with the TLDP method achieved the highest classification accuracy on a strawberry pests and diseases image dataset (96.79%), followed by ImageNet pre-trained ResNet-50 (96.56%). In terms of computational cost, DANet was only a quarter of ResNet-50. The pre-trained DANet was also tested on other open pests and diseases image datasets. It still shows comparable performance to ImageNet pre-trained models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
47秒前
阳佟人达发布了新的文献求助10
51秒前
科研通AI5应助阳佟人达采纳,获得30
1分钟前
Antonio完成签到 ,获得积分10
1分钟前
千里草完成签到,获得积分10
1分钟前
future完成签到 ,获得积分10
1分钟前
楚襄谷完成签到 ,获得积分10
1分钟前
huanghe完成签到,获得积分10
1分钟前
吴晓娟完成签到 ,获得积分10
1分钟前
科研狗完成签到 ,获得积分10
1分钟前
Tuniverse_完成签到 ,获得积分10
1分钟前
拓跋雨梅完成签到 ,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
藜藜藜在乎你完成签到 ,获得积分10
2分钟前
啦啦啦完成签到 ,获得积分10
2分钟前
2分钟前
箱子发布了新的文献求助20
2分钟前
箱子完成签到,获得积分10
2分钟前
hongw_liu完成签到,获得积分10
2分钟前
jlwang完成签到,获得积分10
2分钟前
研友_08oa3n完成签到 ,获得积分10
3分钟前
爱学习的悦悦子完成签到 ,获得积分10
3分钟前
3分钟前
通科研完成签到 ,获得积分10
3分钟前
胡强发布了新的文献求助10
3分钟前
胡强完成签到,获得积分10
3分钟前
我爱螺蛳粉完成签到 ,获得积分10
4分钟前
Mipe完成签到,获得积分10
4分钟前
王佳豪完成签到,获得积分10
4分钟前
汉堡包应助卡卡西西西采纳,获得10
4分钟前
4分钟前
dm完成签到 ,获得积分10
5分钟前
红茸茸羊完成签到 ,获得积分10
5分钟前
chichenglin完成签到 ,获得积分10
5分钟前
5分钟前
研友_8Y26PL完成签到 ,获得积分10
5分钟前
5分钟前
naczx完成签到,获得积分0
5分钟前
huiluowork完成签到 ,获得积分10
5分钟前
雪山飞龙完成签到,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
A Modified Hierarchical Risk Parity Framework for Portfolio Management 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3575128
求助须知:如何正确求助?哪些是违规求助? 3145110
关于积分的说明 9458116
捐赠科研通 2846383
什么是DOI,文献DOI怎么找? 1564829
邀请新用户注册赠送积分活动 732619
科研通“疑难数据库(出版商)”最低求助积分说明 719188