清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Crop pests and diseases recognition using DANet with TLDP

学习迁移 人工智能 计算机科学 卷积神经网络 深度学习 机器学习 模式识别(心理学) 领域(数学) 上下文图像分类 图像(数学) 数学 纯数学
作者
Shuli Xing,Hyo Jong Lee
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:199: 107144-107144 被引量:20
标识
DOI:10.1016/j.compag.2022.107144
摘要

• A more comprehensive image dataset of crop pests and diseases (CPD) was created. • Transfer learning based on the CPD image dataset (TLDP) was compared with ImageNet pre-training. • A novel Decoupling-and-Attention network was proposed to further improve the accuracy of TLDP. • DANet trained with the TLDP method achieved the highest classification accuracy on various open pest and disease. Pests and diseases are the two primary reasons for poor crop yields. Farmers have traditionally relied on manual methods to identify pests and diseases, which is time-consuming and costly. The Internet and pervasiveness of camera-enabled mobile devices, however, have made image acquisition more convenient and cheaper than ever before, and have launched a wave of research into how to use deep learning models to recognize pests and diseases in field. However, the datasets used in these studies were customized for only one or a few crop types. ImageNet pre-trained models were usually adopted to obtain high accuracy, regardless of the attributes of the target image datasets. A more comprehensive image dataset of crop pests and diseases was created. Transfer learning based on this disease and pest image dataset (TLDP) was compared with ImageNet pre-training. From experiments, we observed that TLDP has a similar effect to ImageNet pre-training. In addition, the performance of transfer learning largely depended on model performance on the source image dataset. To further improve the accuracy of TLDP, a novel convolutional neural network backbone called Decoupling-and-Attention network (DANet) was developed. DANet trained with the TLDP method achieved the highest classification accuracy on a strawberry pests and diseases image dataset (96.79%), followed by ImageNet pre-trained ResNet-50 (96.56%). In terms of computational cost, DANet was only a quarter of ResNet-50. The pre-trained DANet was also tested on other open pests and diseases image datasets. It still shows comparable performance to ImageNet pre-trained models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵一完成签到 ,获得积分10
2秒前
7秒前
LeoBigman完成签到 ,获得积分10
11秒前
12秒前
39秒前
yaoli0823发布了新的文献求助10
44秒前
Axs完成签到,获得积分10
46秒前
科研通AI5应助啊呆哦采纳,获得10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
忽远忽近的她完成签到 ,获得积分10
1分钟前
1分钟前
啊呆哦发布了新的文献求助10
1分钟前
llll完成签到 ,获得积分10
1分钟前
GingerF应助MMMMM采纳,获得500
1分钟前
2分钟前
orangr55发布了新的文献求助30
2分钟前
小艺发布了新的文献求助10
2分钟前
共享精神应助小艺采纳,获得10
2分钟前
Gydl完成签到,获得积分10
3分钟前
orangr55关注了科研通微信公众号
3分钟前
3分钟前
orangr55发布了新的文献求助10
3分钟前
浮游应助oleskarabach采纳,获得10
4分钟前
欣欣完成签到 ,获得积分10
4分钟前
4分钟前
orangr55完成签到,获得积分10
4分钟前
4分钟前
怕黑斑马发布了新的文献求助10
4分钟前
科研啄木鸟完成签到 ,获得积分10
5分钟前
drhwang完成签到,获得积分10
5分钟前
slycmd完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助100
6分钟前
cy0824完成签到 ,获得积分10
7分钟前
wodetaiyangLLL完成签到 ,获得积分10
7分钟前
Ljm发布了新的文献求助20
8分钟前
大模型应助科研通管家采纳,获得10
8分钟前
在水一方应助李哈哈采纳,获得10
8分钟前
Ljm发布了新的文献求助30
8分钟前
9分钟前
李哈哈发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4901079
求助须知:如何正确求助?哪些是违规求助? 4180658
关于积分的说明 12977160
捐赠科研通 3945491
什么是DOI,文献DOI怎么找? 2164166
邀请新用户注册赠送积分活动 1182447
关于科研通互助平台的介绍 1088773