Crop pests and diseases recognition using DANet with TLDP

学习迁移 人工智能 计算机科学 卷积神经网络 深度学习 机器学习 模式识别(心理学) 领域(数学) 上下文图像分类 图像(数学) 数学 纯数学
作者
Shuli Xing,Hyo Jong Lee
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:199: 107144-107144 被引量:20
标识
DOI:10.1016/j.compag.2022.107144
摘要

• A more comprehensive image dataset of crop pests and diseases (CPD) was created. • Transfer learning based on the CPD image dataset (TLDP) was compared with ImageNet pre-training. • A novel Decoupling-and-Attention network was proposed to further improve the accuracy of TLDP. • DANet trained with the TLDP method achieved the highest classification accuracy on various open pest and disease. Pests and diseases are the two primary reasons for poor crop yields. Farmers have traditionally relied on manual methods to identify pests and diseases, which is time-consuming and costly. The Internet and pervasiveness of camera-enabled mobile devices, however, have made image acquisition more convenient and cheaper than ever before, and have launched a wave of research into how to use deep learning models to recognize pests and diseases in field. However, the datasets used in these studies were customized for only one or a few crop types. ImageNet pre-trained models were usually adopted to obtain high accuracy, regardless of the attributes of the target image datasets. A more comprehensive image dataset of crop pests and diseases was created. Transfer learning based on this disease and pest image dataset (TLDP) was compared with ImageNet pre-training. From experiments, we observed that TLDP has a similar effect to ImageNet pre-training. In addition, the performance of transfer learning largely depended on model performance on the source image dataset. To further improve the accuracy of TLDP, a novel convolutional neural network backbone called Decoupling-and-Attention network (DANet) was developed. DANet trained with the TLDP method achieved the highest classification accuracy on a strawberry pests and diseases image dataset (96.79%), followed by ImageNet pre-trained ResNet-50 (96.56%). In terms of computational cost, DANet was only a quarter of ResNet-50. The pre-trained DANet was also tested on other open pests and diseases image datasets. It still shows comparable performance to ImageNet pre-trained models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慈祥的花瓣完成签到,获得积分10
刚刚
1秒前
俊逸的代曼完成签到,获得积分10
2秒前
2秒前
努力搬砖努力干完成签到,获得积分10
2秒前
学术鸟发布了新的文献求助10
2秒前
小飞完成签到,获得积分10
2秒前
2秒前
yyf完成签到,获得积分10
3秒前
慕青应助ttttttx采纳,获得10
3秒前
Silence发布了新的文献求助10
3秒前
ltf完成签到,获得积分10
4秒前
mimimi完成签到,获得积分10
4秒前
Guts完成签到,获得积分10
5秒前
可可完成签到,获得积分10
5秒前
若尘完成签到,获得积分10
5秒前
legend完成签到,获得积分10
6秒前
踏实的大地完成签到,获得积分10
6秒前
DijiaXu应助sunyanghu369采纳,获得10
6秒前
pangpang发布了新的文献求助10
6秒前
Chandler完成签到,获得积分10
7秒前
Cat完成签到,获得积分0
7秒前
7秒前
7秒前
7秒前
大闲鱼铭一完成签到 ,获得积分10
8秒前
zhonghebi应助Jane_2022采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
Guts发布了新的文献求助10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
桃桃完成签到,获得积分10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
drtianyunhong完成签到,获得积分10
8秒前
8秒前
8秒前
桐桐应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
young应助科研通管家采纳,获得10
9秒前
CR7应助科研通管家采纳,获得20
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016195
求助须知:如何正确求助?哪些是违规求助? 3556252
关于积分的说明 11320524
捐赠科研通 3289166
什么是DOI,文献DOI怎么找? 1812411
邀请新用户注册赠送积分活动 887936
科研通“疑难数据库(出版商)”最低求助积分说明 812058