亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of undrained failure envelopes of skirted circular foundations using gradient boosting machine algorithm

椭圆 包络线(雷达) 算法 嵌入 Boosting(机器学习) 数学 正交性 航程(航空) 几何学 应用数学
作者
Hongzhen Chen,Zhichao Shen,Le Wang,Chongchong Qi,Yinghui Tian
出处
期刊:Ocean Engineering [Elsevier]
卷期号:258: 111767-111767
标识
DOI:10.1016/j.oceaneng.2022.111767
摘要

Skirted circular foundations have been widely used in offshore engineering and are subjected to combined vertical ( V ), horizontal ( H ) and moment ( M ) loading. Undrained load-carrying capacities of skirted circular foundations under combined V–H-M loading were derived from the finite element limit analysis (FELA) in this paper considering a wide range of embedment ratios and soil strength heterogeneity indices. A double-ellipse fitting strategy was proposed and employed to fit numerical results with a unified failure envelope expression. Due to complex interactions between different variables, gradient boosting machine (GBM) algorithm was introduced to learn the relationship between fitting parameters in the failure envelope expression and their influencing variables based on the database constructed by FELA. The results in this study show that the double-ellipse fitting strategy provides comparably accurate and more conservative predictions of failure envelopes compared with existing fitting strategies. The GBM model developed in this study has a good performance in predicting fitting parameters of failure envelopes. The importance of influencing variables and the effect of database size and data orthogonality on the performance of GBM model were discussed. The method based on double-ellipse fitting strategy and GBM algorithm can be implemented in a program to generate failure envelopes conveniently. • A double-ellipse fitting strategy was proposed for failure envelopes fitting. • Gradient boosting machine (GBM) was used to predict failure envelopes under a wide range of boundary conditions. • The failure envelopes were well predicted and the embedment was the most important influencing variables. • Effect of database size and data orthogonality on the performance of GBM model were discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干青完成签到,获得积分10
6秒前
科研通AI6应助聪明怜阳采纳,获得10
10秒前
15秒前
15秒前
懒癌晚期发布了新的文献求助10
20秒前
lt发布了新的文献求助10
20秒前
oneshamok完成签到 ,获得积分10
22秒前
华仔应助Yashyi采纳,获得10
31秒前
gszy1975完成签到,获得积分10
50秒前
1分钟前
1分钟前
Yashyi发布了新的文献求助10
1分钟前
1分钟前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
与山发布了新的文献求助10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
liubai发布了新的文献求助10
2分钟前
2分钟前
JamesPei应助旺旺采纳,获得10
3分钟前
3分钟前
liubai发布了新的文献求助50
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
枯叶蝶完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助Cristina采纳,获得10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590513
求助须知:如何正确求助?哪些是违规求助? 4674789
关于积分的说明 14795291
捐赠科研通 4632750
什么是DOI,文献DOI怎么找? 2532806
邀请新用户注册赠送积分活动 1501296
关于科研通互助平台的介绍 1468687