亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Transfer Learning-Based Method for Personalized State of Health Estimation of Lithium-Ion Batteries

概化理论 计算机科学 学习迁移 人工智能 健康状况 机器学习 过度拟合 电池(电) 适应(眼睛) 卷积神经网络 人工神经网络 数据挖掘 功率(物理) 量子力学 统计 光学 物理 数学
作者
Guijun Ma,Songpei Xu,Tao Yang,Zhenbang Du,Limin Zhu,Han Ding,Ye Yuan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 759-769 被引量:77
标识
DOI:10.1109/tnnls.2022.3176925
摘要

State of health (SOH) estimation of lithium-ion batteries (LIBs) is of critical importance for battery management systems (BMSs) of electronic devices. An accurate SOH estimation is still a challenging problem limited by diverse usage conditions between training and testing LIBs. To tackle this problem, this article proposes a transfer learning-based method for personalized SOH estimation of a new battery. More specifically, a convolutional neural network (CNN) combined with an improved domain adaptation method is used to construct an SOH estimation model, where the CNN is used to automatically extract features from raw charging voltage trajectories, while the domain adaptation method named maximum mean discrepancy (MMD) is adopted to reduce the distribution difference between training and testing battery data. This article extends MMD from classification tasks to regression tasks, which can therefore be used for SOH estimation. Three different datasets with different charging policies, discharging policies, and ambient temperatures are used to validate the effectiveness and generalizability of the proposed method. The superiority of the proposed SOH estimation method is demonstrated through the comparison with direct model training using state-of-the-art machine learning methods and several other domain adaptation approaches. The results show that the proposed transfer learning-based method has wide generalizability as well as a positive precision improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
Orange应助科研通管家采纳,获得10
32秒前
Cherie77完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
42秒前
穆振家完成签到,获得积分10
53秒前
1分钟前
1分钟前
2分钟前
Axs完成签到,获得积分10
2分钟前
Kevin完成签到,获得积分10
2分钟前
2分钟前
羞涩的傲菡完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助50
3分钟前
3分钟前
3分钟前
闲逛的木头2完成签到,获得积分20
4分钟前
捉迷藏完成签到,获得积分0
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
迅速的岩完成签到,获得积分10
4分钟前
HYQ完成签到 ,获得积分10
5分钟前
5分钟前
嘻嘻完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
ding应助科研通管家采纳,获得10
6分钟前
徐凤年完成签到,获得积分10
6分钟前
沐雨微寒完成签到,获得积分10
6分钟前
7分钟前
7分钟前
欣慰外套完成签到 ,获得积分10
7分钟前
yindi1991完成签到 ,获得积分10
8分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
美满的小蘑菇完成签到 ,获得积分10
9分钟前
10分钟前
乐乐应助科研通管家采纳,获得10
10分钟前
10分钟前
瘦瘦的枫叶完成签到 ,获得积分10
11分钟前
11分钟前
量子星尘发布了新的文献求助10
11分钟前
陀思妥耶夫斯基完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596068
求助须知:如何正确求助?哪些是违规求助? 4008190
关于积分的说明 12408923
捐赠科研通 3687090
什么是DOI,文献DOI怎么找? 2032193
邀请新用户注册赠送积分活动 1065428
科研通“疑难数据库(出版商)”最低求助积分说明 950759