A Transfer Learning-Based Method for Personalized State of Health Estimation of Lithium-Ion Batteries

概化理论 计算机科学 学习迁移 人工智能 健康状况 机器学习 过度拟合 电池(电) 适应(眼睛) 卷积神经网络 人工神经网络 数据挖掘 功率(物理) 统计 物理 数学 量子力学 光学
作者
Guijun Ma,Songpei Xu,Tao Yang,Zhenbang Du,Limin Zhu,Han Ding,Ye Yuan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 759-769 被引量:56
标识
DOI:10.1109/tnnls.2022.3176925
摘要

State of health (SOH) estimation of lithium-ion batteries (LIBs) is of critical importance for battery management systems (BMSs) of electronic devices. An accurate SOH estimation is still a challenging problem limited by diverse usage conditions between training and testing LIBs. To tackle this problem, this article proposes a transfer learning-based method for personalized SOH estimation of a new battery. More specifically, a convolutional neural network (CNN) combined with an improved domain adaptation method is used to construct an SOH estimation model, where the CNN is used to automatically extract features from raw charging voltage trajectories, while the domain adaptation method named maximum mean discrepancy (MMD) is adopted to reduce the distribution difference between training and testing battery data. This article extends MMD from classification tasks to regression tasks, which can therefore be used for SOH estimation. Three different datasets with different charging policies, discharging policies, and ambient temperatures are used to validate the effectiveness and generalizability of the proposed method. The superiority of the proposed SOH estimation method is demonstrated through the comparison with direct model training using state-of-the-art machine learning methods and several other domain adaptation approaches. The results show that the proposed transfer learning-based method has wide generalizability as well as a positive precision improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou默完成签到,获得积分10
刚刚
科研通AI5应助cici采纳,获得10
刚刚
1秒前
2秒前
2秒前
赘婿应助ysy采纳,获得10
3秒前
acc发布了新的文献求助10
3秒前
3秒前
Yun yun发布了新的文献求助10
4秒前
4秒前
LuckyDing完成签到,获得积分10
6秒前
洋洋洋耶发布了新的文献求助10
6秒前
7秒前
科研苦笔完成签到,获得积分10
7秒前
黎树发布了新的文献求助10
7秒前
Herman完成签到,获得积分10
8秒前
无奈满天发布了新的文献求助10
9秒前
大模型应助小太阳采纳,获得10
9秒前
10秒前
11秒前
lal完成签到,获得积分10
11秒前
上官若男应助Yun yun采纳,获得10
12秒前
12秒前
灰HHH完成签到,获得积分10
12秒前
小马甲应助沐沐采纳,获得10
13秒前
笑点低戾发布了新的文献求助10
14秒前
14秒前
深情安青应助羞涩的荟采纳,获得10
14秒前
协和_子鱼发布了新的文献求助10
15秒前
甜甜努力搞科研完成签到,获得积分10
15秒前
15秒前
叶落孤城发布了新的文献求助10
16秒前
科研通AI5应助王饼干采纳,获得10
16秒前
yiryir完成签到 ,获得积分10
17秒前
醉熏的伊发布了新的文献求助10
18秒前
运气贼好的熊猫完成签到,获得积分10
19秒前
香蕉觅云应助笑点低戾采纳,获得10
19秒前
jopaul完成签到,获得积分10
21秒前
june应助Clara凤采纳,获得10
22秒前
22秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712195
求助须知:如何正确求助?哪些是违规求助? 3260364
关于积分的说明 9913779
捐赠科研通 2973716
什么是DOI,文献DOI怎么找? 1630764
邀请新用户注册赠送积分活动 773579
科研通“疑难数据库(出版商)”最低求助积分说明 744348