A Transfer Learning-Based Method for Personalized State of Health Estimation of Lithium-Ion Batteries

概化理论 计算机科学 学习迁移 人工智能 健康状况 机器学习 过度拟合 电池(电) 适应(眼睛) 卷积神经网络 人工神经网络 数据挖掘 功率(物理) 统计 物理 数学 量子力学 光学
作者
Guijun Ma,Songpei Xu,Tao Yang,Zhenbang Du,Limin Zhu,Han Ding,Ye Yuan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 759-769 被引量:52
标识
DOI:10.1109/tnnls.2022.3176925
摘要

State of health (SOH) estimation of lithium-ion batteries (LIBs) is of critical importance for battery management systems (BMSs) of electronic devices. An accurate SOH estimation is still a challenging problem limited by diverse usage conditions between training and testing LIBs. To tackle this problem, this article proposes a transfer learning-based method for personalized SOH estimation of a new battery. More specifically, a convolutional neural network (CNN) combined with an improved domain adaptation method is used to construct an SOH estimation model, where the CNN is used to automatically extract features from raw charging voltage trajectories, while the domain adaptation method named maximum mean discrepancy (MMD) is adopted to reduce the distribution difference between training and testing battery data. This article extends MMD from classification tasks to regression tasks, which can therefore be used for SOH estimation. Three different datasets with different charging policies, discharging policies, and ambient temperatures are used to validate the effectiveness and generalizability of the proposed method. The superiority of the proposed SOH estimation method is demonstrated through the comparison with direct model training using state-of-the-art machine learning methods and several other domain adaptation approaches. The results show that the proposed transfer learning-based method has wide generalizability as well as a positive precision improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美嘉美发布了新的文献求助10
1秒前
Leoniko完成签到,获得积分10
1秒前
茶蛋完成签到,获得积分10
1秒前
刁刁发布了新的文献求助10
1秒前
1秒前
thth发布了新的文献求助10
1秒前
1秒前
2秒前
moshi发布了新的文献求助10
2秒前
思源应助jing采纳,获得10
2秒前
2秒前
hy发布了新的文献求助10
2秒前
xiapihpou发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
chrysan发布了新的文献求助10
5秒前
赘婿应助福明明采纳,获得10
5秒前
Mellet发布了新的文献求助10
5秒前
wyy发布了新的文献求助30
6秒前
kun发布了新的文献求助10
6秒前
天天快乐应助ZhangBo采纳,获得10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
不配.应助科研通管家采纳,获得20
8秒前
Owen应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
吉祥应助科研通管家采纳,获得30
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
cxxxx应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
cxxxx应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153113
求助须知:如何正确求助?哪些是违规求助? 2804274
关于积分的说明 7858206
捐赠科研通 2462058
什么是DOI,文献DOI怎么找? 1310639
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794