The Evolving Role of Neoadjuvant Therapy for Operable Breast Cancer

医学 乳腺癌 新辅助治疗 肿瘤科 内科学 癌症 雌激素受体 纳特 疾病 阶段(地层学) 计算机网络 计算机科学 生物 古生物学
作者
Laura M. Spring,Yael Bar,Steven J. Isakoff
出处
期刊:Journal of The National Comprehensive Cancer Network 卷期号:20 (6): 723-734 被引量:34
标识
DOI:10.6004/jnccn.2022.7016
摘要

The role of neoadjuvant therapy (NAT) for localized breast cancer has evolved tremendously over the past several years. Currently, NAT is the preferred option for high-risk early triple-negative (TN) and HER2-positive (HER2+) breast cancers and is indicated for some estrogen receptor-positive (ER+) breast cancers. In addition to traditional absolute indications for NAT, relative indications such as the assessment of outcomes at the time of surgery and guidance of treatment escalation and de-escalation have greatly evolved in recent years. Pathologic complete response (pCR) and the Residual Cancer Burden (RCB) index are highly prognostic for disease recurrence and survival, mainly in patients with TN or HER2+ disease. Furthermore, post-NAT escalation strategies have been shown to improve long-term outcomes of patients who do not achieve pCR. Additionally, by allowing the direct assessment of drug effect on the tumor, the neoadjuvant setting has become an attractive setting for the exploration of novel agents and the identification of predictive biomarkers. Neoadjuvant trial design has also evolved, using adaptive treatment approaches that enable treatment de-escalation or escalation based on response. However, despite multiple practice-changing neoadjuvant trials and the addition of various new agents to the neoadjuvant setting for early breast cancer, many key questions remain. For example, patient selection for neoadjuvant immunotherapy in TN breast cancer, de-escalation methods in HER2+ breast cancer, and the use of gene expression profiles to guide NAT recommendations in ER+ breast cancer. This article reviews the current approach for NAT in localized breast cancer as well as evolving NAT strategies, the key remaining challenges, and the ongoing work in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eureka发布了新的文献求助10
1秒前
Oay发布了新的文献求助10
1秒前
1秒前
烟花应助Joel采纳,获得10
2秒前
2秒前
3秒前
Zczzx发布了新的文献求助10
4秒前
beloved发布了新的文献求助10
4秒前
善学以致用应助9527King采纳,获得10
4秒前
ggbond关注了科研通微信公众号
5秒前
6秒前
哈哈哈发布了新的文献求助10
6秒前
6秒前
6秒前
Jackie发布了新的文献求助10
7秒前
赢学发布了新的文献求助10
8秒前
dd完成签到,获得积分10
8秒前
8秒前
10秒前
ling_lz完成签到,获得积分10
11秒前
dd发布了新的文献求助10
12秒前
13秒前
传奇3应助皮卡丘采纳,获得10
13秒前
14秒前
科研通AI5应助三三四采纳,获得10
14秒前
kk发布了新的文献求助10
15秒前
李健的小迷弟应助瓜子壳采纳,获得10
16秒前
李紫硕发布了新的文献求助10
17秒前
爆米花应助阿文在读研采纳,获得30
18秒前
CodeCraft应助D-L@rabbit采纳,获得10
18秒前
19秒前
20秒前
20秒前
领导范儿应助活力的彩虹采纳,获得10
20秒前
Zczzx完成签到,获得积分10
21秒前
CuSO4完成签到,获得积分10
21秒前
21秒前
断秋1完成签到 ,获得积分10
22秒前
22秒前
缺粥发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554496
求助须知:如何正确求助?哪些是违规求助? 3130339
关于积分的说明 9386331
捐赠科研通 2829627
什么是DOI,文献DOI怎么找? 1555633
邀请新用户注册赠送积分活动 726197
科研通“疑难数据库(出版商)”最低求助积分说明 715484