Sparsity-based method for ring artifact elimination in computed tomography

平滑的 工件(错误) 算法 投影(关系代数) 计算机科学 功能(生物学) 氡变换 迭代重建 图像(数学) 人工智能 戒指(化学) 数学 计算机视觉 生物 有机化学 化学 进化生物学
作者
Mona Selim,Essam A. Rashed,Mohammed A. Atiea,Hiroyuki Kudo
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (6): e0268410-e0268410 被引量:3
标识
DOI:10.1371/journal.pone.0268410
摘要

Ring artifact elimination is one of the popular problems in computed tomography (CT). It appears in the reconstructed image in the form of bright or dark patterns of concentric circles. In this paper, based on the compressed sensing theory, we propose a method for eliminating the ring artifact during the image reconstruction. The proposed method is based on representing the projection data by a sum of two components. The first component contains ideal correct values, while the latter contains imperfect error values causing the ring artifact. We propose to minimize some sparsity-induced norms corresponding to the imperfect error components to effectively eliminate the ring artifact. In particular, we investigate the effect of using different sparse models, i.e. different sparsity-induced norms, on the accuracy of the ring artifact correction. The proposed cost function is optimized using an iterative algorithm derived from the alternative direction method of multipliers. Moreover, we propose improved versions of the proposed algorithms by incorporating a smoothing penalty function into the cost function. We also introduce angular constrained forms of the proposed algorithms by considering a special case as follows. The imperfect error values are constant over all the projection angles, as in the case where the source of ring artifact is the non-uniform sensitivity of the detector. Real data and simulation studies were performed to evaluate the proposed algorithms. Results demonstrate that the proposed algorithms with incorporating smoothing penalty and their angular constrained forms are effective in ring artifact elimination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LEMONS应助Camellia采纳,获得10
刚刚
Jane发布了新的文献求助10
刚刚
橘橘完成签到,获得积分10
刚刚
赘婿应助YXH采纳,获得10
刚刚
1秒前
安静沅发布了新的文献求助20
2秒前
李小狼不浪完成签到,获得积分10
3秒前
3秒前
wf发布了新的文献求助10
3秒前
执城完成签到,获得积分10
4秒前
章铭-111发布了新的文献求助10
5秒前
6秒前
pangqiu应助背后的小白菜采纳,获得10
8秒前
深情安青应助Jane采纳,获得10
8秒前
可爱的函函应助童绾绾采纳,获得10
9秒前
hhh完成签到 ,获得积分10
10秒前
清辉夜凝完成签到 ,获得积分10
10秒前
希望天下0贩的0应助Camellia采纳,获得10
11秒前
吐个泡泡发布了新的文献求助10
11秒前
Sunnig盈完成签到,获得积分10
11秒前
Gauze完成签到,获得积分10
12秒前
所所应助yx_cheng采纳,获得10
13秒前
13秒前
13秒前
CipherSage应助安静沅采纳,获得10
13秒前
14秒前
我就是我Andre完成签到,获得积分0
14秒前
慕青应助王大帅采纳,获得10
14秒前
淡淡夕阳发布了新的文献求助10
16秒前
17秒前
称心的又亦完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
laallaall应助包包琪采纳,获得10
18秒前
大海发布了新的文献求助10
18秒前
李健的粉丝团团长应助Myx采纳,获得10
20秒前
温暖白容完成签到 ,获得积分20
21秒前
UUU完成签到,获得积分10
23秒前
田様应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105