Sparsity-based method for ring artifact elimination in computed tomography

平滑的 工件(错误) 算法 投影(关系代数) 计算机科学 功能(生物学) 氡变换 迭代重建 图像(数学) 人工智能 戒指(化学) 数学 计算机视觉 生物 有机化学 化学 进化生物学
作者
Mona Selim,Essam A. Rashed,Mohammed A. Atiea,Hiroyuki Kudo
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (6): e0268410-e0268410 被引量:3
标识
DOI:10.1371/journal.pone.0268410
摘要

Ring artifact elimination is one of the popular problems in computed tomography (CT). It appears in the reconstructed image in the form of bright or dark patterns of concentric circles. In this paper, based on the compressed sensing theory, we propose a method for eliminating the ring artifact during the image reconstruction. The proposed method is based on representing the projection data by a sum of two components. The first component contains ideal correct values, while the latter contains imperfect error values causing the ring artifact. We propose to minimize some sparsity-induced norms corresponding to the imperfect error components to effectively eliminate the ring artifact. In particular, we investigate the effect of using different sparse models, i.e. different sparsity-induced norms, on the accuracy of the ring artifact correction. The proposed cost function is optimized using an iterative algorithm derived from the alternative direction method of multipliers. Moreover, we propose improved versions of the proposed algorithms by incorporating a smoothing penalty function into the cost function. We also introduce angular constrained forms of the proposed algorithms by considering a special case as follows. The imperfect error values are constant over all the projection angles, as in the case where the source of ring artifact is the non-uniform sensitivity of the detector. Real data and simulation studies were performed to evaluate the proposed algorithms. Results demonstrate that the proposed algorithms with incorporating smoothing penalty and their angular constrained forms are effective in ring artifact elimination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研圈外人完成签到 ,获得积分10
1秒前
哈白完成签到,获得积分10
1秒前
万能图书馆应助文文采纳,获得10
1秒前
mjy完成签到,获得积分10
2秒前
Li发布了新的文献求助10
2秒前
缓慢珠完成签到,获得积分10
3秒前
3秒前
杜杜完成签到,获得积分10
3秒前
在水一方应助慕航采纳,获得10
5秒前
诗情画奕关注了科研通微信公众号
5秒前
5秒前
zigzagya发布了新的文献求助10
6秒前
倪吉旭完成签到,获得积分10
6秒前
背后连虎完成签到,获得积分10
7秒前
wulianlian完成签到,获得积分10
7秒前
zzzz发布了新的文献求助10
7秒前
这个发布了新的文献求助30
8秒前
8秒前
8秒前
斯文谷秋发布了新的文献求助30
9秒前
戈多完成签到,获得积分10
11秒前
11秒前
lc完成签到,获得积分10
12秒前
乐乐应助友00000采纳,获得10
12秒前
ding应助子璇采纳,获得10
14秒前
14秒前
wulianlian发布了新的文献求助10
14秒前
14秒前
14秒前
kai完成签到,获得积分10
15秒前
慕航完成签到,获得积分10
16秒前
16秒前
竹筏过海应助Joshua采纳,获得10
17秒前
嚯嚯很有才发布了新的文献求助100
17秒前
直率的醉冬关注了科研通微信公众号
18秒前
18秒前
科研通AI2S应助qingqing采纳,获得10
18秒前
优雅冷风发布了新的文献求助10
19秒前
19秒前
慕航发布了新的文献求助10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232433
求助须知:如何正确求助?哪些是违规求助? 2879364
关于积分的说明 8210667
捐赠科研通 2546680
什么是DOI,文献DOI怎么找? 1376287
科研通“疑难数据库(出版商)”最低求助积分说明 647594
邀请新用户注册赠送积分活动 622856