A Nomogram for Predicting Symptomatic Intracranial Hemorrhage after Endovascular Thrombectomy

医学 列线图 接收机工作特性 逻辑回归 曲线下面积 优势比 冲程(发动机) 逐步回归 内科学 核医学 外科 放射科 机械工程 工程类
作者
Zhiming Kang,Chuang Nie,Keni Ouyang,Xiangbo Wu,Jiaqi Yin,Dong Sun,Bin Mei
出处
期刊:Clinical Neurology and Neurosurgery [Elsevier]
卷期号:218: 107298-107298 被引量:6
标识
DOI:10.1016/j.clineuro.2022.107298
摘要

Symptomatic intracranial hemorrhage (sICH) is a devastating complication of endovascular thrombectomy (EVT). We aim to develop and validate a nomogram for predicting sICH in patients with large vessel occlusion (LVO) in the anterior circulation.We performed a single-center retrospective analysis on collected data from patients undergoing EVT for LVO in the anterior circulation between January 2018 and December 2021. Forward stepwise logistic regression was performed to identify independent predictors of sICH and establish a nomogram. The discrimination and calibration of the model was accessed using the area under the receiver operating characteristic curve (AUC-ROC) and calibration plot. The model was internally validated using bootstrap and 5-fold cross-validation.243 patients were included, among whom 23 developed sICH (9.5%). After multivariate logistic regression, baseline glucose level (odds ratio [OR], 1.16; p = 0.022), Alberta Stroke Program Early CT Score (OR, 0.44; p < 0.001), regional Leptomeningeal Collateral score (OR, 0.74; p < 0.001) were identified as independent predictors of sICH, which were then incorporated into a predictive nomogram. The ROC curve of the model showed good discriminative ability with an AUC of 0.856 (95% CI: 0.785-0.928). The calibration plot of the model demonstrated good consistency between the actual observed and the predicted probability of sICH. The model was internally validated by using bootstrap (1000 resamples) with an AUC of 0.835 (95%CI: 0.782-0.887) and 5-fold cross-validation with an AUC of 0.831 (95%CI: 0.775-0.887).Our model is a reliable tool to predict sICH after EVT. Although the model was internally validated, further external validation is also warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
科研通AI5应助黒面包采纳,获得30
3秒前
3秒前
4秒前
落后访风99完成签到,获得积分10
4秒前
lsj2233发布了新的文献求助10
5秒前
核桃发布了新的文献求助10
5秒前
Leo发布了新的文献求助200
7秒前
7秒前
7秒前
大方花生发布了新的文献求助10
9秒前
Sean发布了新的文献求助30
9秒前
汉堡包应助lsj2233采纳,获得10
11秒前
11秒前
WXC发布了新的文献求助30
11秒前
MchemG应助叶子采纳,获得10
11秒前
12秒前
12秒前
14秒前
14秒前
小白完成签到,获得积分10
14秒前
jiachen发布了新的文献求助10
16秒前
未来可期完成签到,获得积分10
16秒前
土豪的摩托完成签到 ,获得积分10
16秒前
黒面包发布了新的文献求助30
16秒前
17秒前
婷婷发布了新的文献求助10
18秒前
左肩微笑发布了新的文献求助10
18秒前
ding应助嘉禾瑶采纳,获得10
18秒前
WXC完成签到,获得积分10
19秒前
沉静的破茧完成签到,获得积分10
19秒前
无限秋天发布了新的文献求助10
19秒前
Cynicism发布了新的文献求助20
21秒前
21秒前
lsj2233完成签到,获得积分20
21秒前
22秒前
ronnie完成签到,获得积分10
23秒前
xuli-888发布了新的文献求助30
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484032
求助须知:如何正确求助?哪些是违规求助? 3073129
关于积分的说明 9129662
捐赠科研通 2764825
什么是DOI,文献DOI怎么找? 1517375
邀请新用户注册赠送积分活动 702100
科研通“疑难数据库(出版商)”最低求助积分说明 700990