Probabilistic back analysis for rainfall-induced slope failure using MLS-SVR and Bayesian analysis

概率逻辑 复制 边坡稳定性 安全系数 边坡破坏 贝叶斯概率 统计 环境科学 数学 岩土工程 工程类
作者
Himanshu Rana,G. L. Sivakumar Babu
出处
期刊:Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards [Taylor & Francis]
卷期号:18 (1): 107-120 被引量:14
标识
DOI:10.1080/17499518.2022.2084555
摘要

Measurement and model uncertainties in soil parameters account for the difference between slope behaviour in the field and expected behaviour. The probabilistic back analysis is an effective approach to quantify these uncertainties in soil parameters. A new methodology for probabilistic back analysis is proposed to evaluate the uncertainties in soil parameters for observed data for slope. The proposed methodology implements multi-output least square support vector regression (MLS-SVR) to replicate the numerical model for slope under precipitation. This methodology also utilises a multi-objective genetic algorithm and Bayesian analysis to estimate updated statistics of soil parameters for observed data for slope. The rainfall-induced slope failure at Malin, Pune, India, in 2014 is used as a case study to validate the proposed methodology. The mean values of soil parameters are updated using multi-objective genetic algorithm for the expected values of safety factor. The uncertainties in soil parameters are estimated using Bayesian analysis. The updated statistics of input parameters suggest that matric suction governs the slope behaviour under rainfall precipitation. The results of the study suggest that continuous updating of the observations reduces the uncertainties involved in soil parameters. It is noted that the values of safety factor calculated using updated parameters are consistent with the slope failure observed in the field. Hence, results of the study can be used for the reliability-based design of slopes and the provision of remedial measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
子车茗应助神奇的光子采纳,获得20
6秒前
小悦子完成签到,获得积分10
6秒前
ling2001完成签到,获得积分10
6秒前
7秒前
7秒前
DQ发布了新的文献求助10
7秒前
7秒前
9秒前
10秒前
ym完成签到,获得积分20
10秒前
10秒前
ding发布了新的文献求助10
10秒前
sisii完成签到,获得积分10
10秒前
星辰大海应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得30
12秒前
RAnDw发布了新的文献求助10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
阿秧发布了新的文献求助30
12秒前
ding应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
yz发布了新的文献求助20
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
13秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662898
求助须知:如何正确求助?哪些是违规求助? 3223698
关于积分的说明 9752620
捐赠科研通 2933587
什么是DOI,文献DOI怎么找? 1606194
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734775