超材料
材料科学
微波食品加热
纳米技术
变换光学
计算机科学
工程物理
光电子学
电信
工程类
作者
Weiwei Li,Manzhang Xu,He‐Xiu Xu,Xuewen Wang,Wei Huang
标识
DOI:10.1002/adma.202202509
摘要
Since the first demonstration, remarkable progress has been made in the theoretical analysis, structural design, numerical simulation, and potential applications of metamaterial absorbers (MAs). With the continuous advancement of novel materials and creative designs, the absorption of MAs is significantly improved over a wide frequency spectrum from microwaves to the optical regime. Further, the integration of active elements into the MA design allows the dynamical manipulation of electromagnetic waves, opening a new platform to push breakthroughs in metadevices. In the last several years, numerous efforts have been devoted to exploring innovative approaches for incorporating tunability to MAs, which is highly desirable because of the progressively increasing demand on designing versatile metadevices. Here, a comprehensive and systematical overview of active MAs with adaptive and on-demand manner is presented, highlighting innovative materials and unique strategies to precisely control the electromagnetic response. In addition to the mainstream method by manipulating periodic patterns, two additional approaches, including tailoring dielectric spacer and transforming overall structure are called back. Following this, key parameters, such as operating frequency, relative tuning range, and switching speed are summarized and compared to guide for optimum design. Finally, potential opportunities in the development of active MAs are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI