Detecting glaucoma with only OCT: Implications for the clinic, research, screening, and AI development

青光眼 神经纤维层 光学相干层析成像 计算机科学 人工智能 工件(错误) 视网膜 医学 章节(排版) 验光服务 眼科 操作系统
作者
Donald C. Hood,Sol La Bruna,Emmanouil Tsamis,Kaveri A. Thakoor,Anvit Rai,Ari Leshno,Carlos Gustavo V. De Moraes,George A. Cioffi,Jeffrey M. Liebmann
出处
期刊:Progress in Retinal and Eye Research [Elsevier BV]
卷期号:90: 101052-101052 被引量:56
标识
DOI:10.1016/j.preteyeres.2022.101052
摘要

A method for detecting glaucoma based only on optical coherence tomography (OCT) is of potential value for routine clinical decisions, for inclusion criteria for research studies and trials, for large-scale clinical screening, as well as for the development of artificial intelligence (AI) decision models. Recent work suggests that the OCT probability (p-) maps, also known as deviation maps, can play a key role in an OCT-based method. However, artifacts seen on the p-maps of healthy control eyes can resemble patterns of damage due to glaucoma. We document in section 2 that these glaucoma-like artifacts are relatively common and are probably due to normal anatomical variations in healthy eyes. We also introduce a simple anatomical artifact model based upon known anatomical variations to help distinguish these artifacts from actual glaucomatous damage. In section 3, we apply this model to an OCT-based method for detecting glaucoma that starts with an examination of the retinal nerve fiber layer (RNFL) p-map. While this method requires a judgment by the clinician, sections 4 and 5 describe automated methods that do not. In section 4, the simple model helps explain the relatively poor performance of commonly employed summary statistics, including circumpapillary RNFL thickness. In section 5, the model helps account for the success of an AI deep learning model, which in turn validates our focus on the RNFL p-map. Finally, in section 6 we consider the implications of OCT-based methods for the clinic, research, screening, and the development of AI models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jimmyhui完成签到,获得积分10
刚刚
yuaasusanaann发布了新的文献求助10
1秒前
呆萌的鼠标完成签到 ,获得积分0
2秒前
2秒前
3秒前
yznfly应助ling采纳,获得30
3秒前
rafa完成签到 ,获得积分10
4秒前
Dasiliy发布了新的文献求助10
4秒前
5秒前
少堂完成签到,获得积分10
6秒前
htt完成签到 ,获得积分10
6秒前
横扫一切牛鬼蛇神完成签到,获得积分10
6秒前
7秒前
大宝哥哥完成签到 ,获得积分10
7秒前
8秒前
科研通AI2S应助李麟采纳,获得10
9秒前
清新的雁凡应助李麟采纳,获得10
9秒前
小鱼儿发布了新的文献求助10
9秒前
ysw完成签到,获得积分10
9秒前
iNk应助少堂采纳,获得50
10秒前
FashionBoy应助科研鸟采纳,获得10
12秒前
核桃应助猫样少女采纳,获得10
12秒前
12秒前
奋斗的若云完成签到,获得积分10
12秒前
13秒前
科研通AI5应助大力芸采纳,获得10
13秒前
13秒前
Uload完成签到,获得积分10
13秒前
美丽的依霜完成签到 ,获得积分10
13秒前
14秒前
15秒前
15秒前
hope_sun发布了新的文献求助30
16秒前
NexusExplorer应助yuaasusanaann采纳,获得10
16秒前
17秒前
12发布了新的文献求助10
17秒前
17秒前
脑洞疼应助ysw采纳,获得10
17秒前
小龙发布了新的文献求助10
18秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403