Detecting glaucoma with only OCT: Implications for the clinic, research, screening, and AI development

青光眼 神经纤维层 光学相干层析成像 计算机科学 人工智能 工件(错误) 视网膜 医学 章节(排版) 验光服务 眼科 操作系统
作者
Donald C. Hood,Sol La Bruna,Emmanouil Tsamis,Kaveri A. Thakoor,Anvit Rai,Ari Leshno,Carlos Gustavo V. De Moraes,George A. Cioffi,Jeffrey M. Liebmann
出处
期刊:Progress in Retinal and Eye Research [Elsevier]
卷期号:90: 101052-101052 被引量:70
标识
DOI:10.1016/j.preteyeres.2022.101052
摘要

A method for detecting glaucoma based only on optical coherence tomography (OCT) is of potential value for routine clinical decisions, for inclusion criteria for research studies and trials, for large-scale clinical screening, as well as for the development of artificial intelligence (AI) decision models. Recent work suggests that the OCT probability (p-) maps, also known as deviation maps, can play a key role in an OCT-based method. However, artifacts seen on the p-maps of healthy control eyes can resemble patterns of damage due to glaucoma. We document in section 2 that these glaucoma-like artifacts are relatively common and are probably due to normal anatomical variations in healthy eyes. We also introduce a simple anatomical artifact model based upon known anatomical variations to help distinguish these artifacts from actual glaucomatous damage. In section 3, we apply this model to an OCT-based method for detecting glaucoma that starts with an examination of the retinal nerve fiber layer (RNFL) p-map. While this method requires a judgment by the clinician, sections 4 and 5 describe automated methods that do not. In section 4, the simple model helps explain the relatively poor performance of commonly employed summary statistics, including circumpapillary RNFL thickness. In section 5, the model helps account for the success of an AI deep learning model, which in turn validates our focus on the RNFL p-map. Finally, in section 6 we consider the implications of OCT-based methods for the clinic, research, screening, and the development of AI models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
123木头人发布了新的文献求助10
2秒前
神勇若雁发布了新的文献求助10
2秒前
斧王发布了新的文献求助10
3秒前
浮游应助kitty采纳,获得10
5秒前
刻苦的糖豆完成签到,获得积分10
7秒前
hey完成签到,获得积分10
9秒前
锅里有两条鱼完成签到 ,获得积分10
9秒前
9秒前
11秒前
13秒前
吡嗪完成签到,获得积分10
14秒前
大脸猫完成签到 ,获得积分10
14秒前
天天快乐应助诸葛一笑采纳,获得10
15秒前
16秒前
sscihard完成签到,获得积分10
17秒前
沉迷科研无法自拔完成签到,获得积分10
17秒前
17秒前
高贵路灯完成签到,获得积分10
20秒前
缥缈的寒梦完成签到,获得积分10
21秒前
123木头人完成签到,获得积分20
22秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
Amelie发布了新的文献求助10
23秒前
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
LYSM应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得30
23秒前
慕青应助科研通管家采纳,获得10
23秒前
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
无花果应助科研通管家采纳,获得10
24秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
水水应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419734
求助须知:如何正确求助?哪些是违规求助? 4535018
关于积分的说明 14147731
捐赠科研通 4451737
什么是DOI,文献DOI怎么找? 2441853
邀请新用户注册赠送积分活动 1433423
关于科研通互助平台的介绍 1410663