Detecting glaucoma with only OCT: Implications for the clinic, research, screening, and AI development

青光眼 神经纤维层 光学相干层析成像 计算机科学 人工智能 工件(错误) 视网膜 医学 章节(排版) 验光服务 眼科 操作系统
作者
Donald C. Hood,Sol La Bruna,Emmanouil Tsamis,Kaveri A. Thakoor,Anvit Rai,Ari Leshno,Carlos Gustavo V. De Moraes,George A. Cioffi,Jeffrey M. Liebmann
出处
期刊:Progress in Retinal and Eye Research [Elsevier]
卷期号:90: 101052-101052 被引量:56
标识
DOI:10.1016/j.preteyeres.2022.101052
摘要

A method for detecting glaucoma based only on optical coherence tomography (OCT) is of potential value for routine clinical decisions, for inclusion criteria for research studies and trials, for large-scale clinical screening, as well as for the development of artificial intelligence (AI) decision models. Recent work suggests that the OCT probability (p-) maps, also known as deviation maps, can play a key role in an OCT-based method. However, artifacts seen on the p-maps of healthy control eyes can resemble patterns of damage due to glaucoma. We document in section 2 that these glaucoma-like artifacts are relatively common and are probably due to normal anatomical variations in healthy eyes. We also introduce a simple anatomical artifact model based upon known anatomical variations to help distinguish these artifacts from actual glaucomatous damage. In section 3, we apply this model to an OCT-based method for detecting glaucoma that starts with an examination of the retinal nerve fiber layer (RNFL) p-map. While this method requires a judgment by the clinician, sections 4 and 5 describe automated methods that do not. In section 4, the simple model helps explain the relatively poor performance of commonly employed summary statistics, including circumpapillary RNFL thickness. In section 5, the model helps account for the success of an AI deep learning model, which in turn validates our focus on the RNFL p-map. Finally, in section 6 we consider the implications of OCT-based methods for the clinic, research, screening, and the development of AI models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懦弱的难敌完成签到 ,获得积分10
1秒前
嘻嘻完成签到 ,获得积分10
1秒前
落后的觅松完成签到,获得积分10
1秒前
默默的巧荷完成签到,获得积分10
2秒前
2秒前
kitty完成签到,获得积分10
2秒前
喜哈哈发布了新的文献求助10
4秒前
真实的一鸣完成签到,获得积分10
4秒前
Stewie完成签到,获得积分10
4秒前
4秒前
hh完成签到,获得积分10
5秒前
shi0331完成签到,获得积分10
5秒前
尼古丁的味道完成签到 ,获得积分10
6秒前
6秒前
sxqz完成签到,获得积分10
7秒前
maox1aoxin应助阿辉采纳,获得30
7秒前
wangbq完成签到 ,获得积分10
7秒前
7秒前
Zz完成签到 ,获得积分10
7秒前
Hyperion完成签到,获得积分20
7秒前
HP发布了新的文献求助10
7秒前
马喽完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
耶耶完成签到,获得积分10
9秒前
一二三完成签到,获得积分10
10秒前
Delire发布了新的文献求助10
10秒前
蔺天宇完成签到,获得积分10
11秒前
11秒前
林小林发布了新的文献求助10
11秒前
xr完成签到,获得积分10
11秒前
小夏完成签到,获得积分10
12秒前
犹豫依丝完成签到 ,获得积分10
13秒前
英姑应助一个小胖子采纳,获得10
13秒前
艾希发布了新的文献求助10
13秒前
领导范儿应助hebing采纳,获得10
13秒前
万能图书馆应助炙热初晴采纳,获得10
14秒前
英属维尔京群岛完成签到 ,获得积分10
14秒前
勤恳怀梦完成签到,获得积分10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248973
求助须知:如何正确求助?哪些是违规求助? 2892360
关于积分的说明 8270969
捐赠科研通 2560642
什么是DOI,文献DOI怎么找? 1389143
科研通“疑难数据库(出版商)”最低求助积分说明 651004
邀请新用户注册赠送积分活动 627869