Reversible data hiding in encrypted images based on IWT and chaotic system

加密 计算机科学 争先恐后 信息隐藏 有效载荷(计算) 序列(生物学) 算法 图像(数学) 混乱的 无损压缩 小波 人工智能 计算机视觉
作者
Lingzhuang Meng,Lianshan Liu,Xiaoli Wang,Gang Tian
出处
期刊:Multimedia Tools and Applications [Springer Nature]
标识
DOI:10.1007/s11042-022-12415-z
摘要

In this paper, a reversible data hiding in encrypted image (RDH-EI) algorithm based on integer wavelet transform (IWT) and chaotic system was proposed. The image decrypted and the extracted data by the algorithm were both lossless. In this scheme, IWT transform was used to decompose the carrier image into wavelet components, and the chaotic system was used to generate position sequence, encryption sequence and scrambling sequence, which were used for data hiding and image encryption. The secret data was hidden in the diagonal component according to the position sequence, and the approximate component was encrypted according to the encryption sequence and the scrambling sequence, and then the final encrypted image was obtained. A solution was proposed to solve the problem of pixel loss in the reconstruction process after the wavelet component is encrypted. The key used to decrypt the image and extract the secret information was divided into two parts for different levels of security considerations. The method of encrypting image after data hiding made the solution more secure and with higher maximum payload. Simulation results showed that, compared with some existing schemes, this scheme could obtain better performance, which including higher embedding rate, visual quality of decrypted and extracted images, and anti-attack performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良香岚完成签到,获得积分20
刚刚
刚刚
刚刚
123发布了新的文献求助10
刚刚
刚刚
不安太阳完成签到,获得积分10
1秒前
t_suo完成签到,获得积分10
1秒前
bioinforiver完成签到,获得积分10
1秒前
乐观跳跳糖完成签到,获得积分10
1秒前
1秒前
WxChen发布了新的文献求助10
2秒前
2秒前
酷炫的香魔完成签到,获得积分10
2秒前
2秒前
2秒前
NexusExplorer应助无奈满天采纳,获得10
2秒前
qwt_hello完成签到,获得积分10
2秒前
2秒前
海涛完成签到,获得积分10
3秒前
星星发布了新的文献求助10
4秒前
qq完成签到,获得积分10
4秒前
4秒前
4秒前
中央戏精学院完成签到,获得积分10
4秒前
寒冷依秋完成签到,获得积分10
4秒前
彭于晏应助jogrgr采纳,获得10
4秒前
思源应助momo采纳,获得10
5秒前
guozi应助yi采纳,获得10
5秒前
科研通AI2S应助鲤鱼凛采纳,获得10
5秒前
5秒前
kumarr发布了新的文献求助10
5秒前
5秒前
时尚语梦发布了新的文献求助10
5秒前
苹果酸奶完成签到,获得积分10
6秒前
标致小伙发布了新的文献求助10
7秒前
7秒前
7秒前
科研民工发布了新的文献求助10
7秒前
Owen应助sun采纳,获得10
7秒前
handsomecat发布了新的文献求助10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759