地形
运动规划
计算机科学
点云
人工智能
惯性测量装置
卷积神经网络
移动机器人
计算机视觉
机器人
地理
地图学
作者
Gabriel Waibel,Tobias Löw,Mathieu Nass,David Howard,Tirthankar Bandyopadhyay,Paulo Borges
出处
期刊:IEEE Transactions on Intelligent Transportation Systems
[Institute of Electrical and Electronics Engineers]
日期:2022-02-25
卷期号:23 (9): 16462-16473
被引量:21
标识
DOI:10.1109/tits.2022.3150328
摘要
Perception and interpretation of the terrain is essential for robot navigation, particularly in off-road areas, where terrain characteristics can be highly variable. When planning a path, features such as the terrain gradient and roughness should be considered, and they can jointly represent the traversability cost of the terrain. Despite this range of contributing factors, most cost maps are currently binary in nature, solely indicating traversible versus non-traversible areas. This work presents a joint local and global planning methodology for building continuous cost maps using LIDAR, based on a novel traversability representation of the environment. We investigate two approaches. The first, a statistical approach, computes terrain cost directly from the point cloud. The second, a learning-based approach, predicts an IMU response solely from geometric point cloud data using a 2D-Convolutional-LSTM neural network. This allows us to estimate the cost of a patch without directly driving over it, based on a data set that maps IMU signals to point cloud patches. Based on the terrain analysis, two continuous cost maps are generated to jointly select the optimal path considering distance and traversability cost for local navigation. We present a real-time terrain analysis strategy applicable for local planning, and furthermore demonstrate the straightforward application of the same approach in batch mode for global planning. Off-road autonomous driving experiments in a large and hybrid site illustrate the applicability of the method. We have made the code available online for users to test the method.
科研通智能强力驱动
Strongly Powered by AbleSci AI