How Rough Is the Path? Terrain Traversability Estimation for Local and Global Path Planning

地形 运动规划 计算机科学 点云 人工智能 惯性测量装置 卷积神经网络 移动机器人 计算机视觉 机器人 地理 地图学
作者
Gabriel Waibel,Tobias Löw,Mathieu Nass,David Howard,Tirthankar Bandyopadhyay,Paulo Borges
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 16462-16473 被引量:26
标识
DOI:10.1109/tits.2022.3150328
摘要

Perception and interpretation of the terrain is essential for robot navigation, particularly in off-road areas, where terrain characteristics can be highly variable. When planning a path, features such as the terrain gradient and roughness should be considered, and they can jointly represent the traversability cost of the terrain. Despite this range of contributing factors, most cost maps are currently binary in nature, solely indicating traversible versus non-traversible areas. This work presents a joint local and global planning methodology for building continuous cost maps using LIDAR, based on a novel traversability representation of the environment. We investigate two approaches. The first, a statistical approach, computes terrain cost directly from the point cloud. The second, a learning-based approach, predicts an IMU response solely from geometric point cloud data using a 2D-Convolutional-LSTM neural network. This allows us to estimate the cost of a patch without directly driving over it, based on a data set that maps IMU signals to point cloud patches. Based on the terrain analysis, two continuous cost maps are generated to jointly select the optimal path considering distance and traversability cost for local navigation. We present a real-time terrain analysis strategy applicable for local planning, and furthermore demonstrate the straightforward application of the same approach in batch mode for global planning. Off-road autonomous driving experiments in a large and hybrid site illustrate the applicability of the method. We have made the code available online for users to test the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Clyde完成签到,获得积分10
1秒前
1秒前
和谐续完成签到 ,获得积分10
2秒前
大个应助李皓婷采纳,获得10
2秒前
4秒前
chen完成签到,获得积分10
4秒前
Hello应助ylw采纳,获得10
4秒前
5秒前
ChemistryZyh发布了新的文献求助10
5秒前
wensir发布了新的文献求助10
5秒前
端庄千琴完成签到,获得积分10
5秒前
heavennew完成签到,获得积分10
6秒前
7秒前
眼睛大樱桃完成签到,获得积分10
7秒前
Yuantian发布了新的文献求助10
8秒前
学吗你完成签到 ,获得积分10
8秒前
御青白少发布了新的文献求助10
9秒前
无尽夏完成签到,获得积分10
9秒前
Rylee发布了新的文献求助10
11秒前
11秒前
无私的念文完成签到 ,获得积分10
12秒前
充电宝应助Yuantian采纳,获得10
13秒前
水水完成签到,获得积分10
14秒前
sskr发布了新的文献求助10
14秒前
15327432191完成签到 ,获得积分10
15秒前
酷波er应助果汁采纳,获得10
15秒前
善学以致用应助程公子采纳,获得10
15秒前
海阔天空发布了新的文献求助10
15秒前
ChemistryZyh完成签到,获得积分10
16秒前
wensir完成签到,获得积分10
18秒前
斯文败类应助Rylee采纳,获得10
19秒前
养不熟的野猫完成签到,获得积分10
19秒前
sskr完成签到,获得积分10
19秒前
高文强完成签到,获得积分10
20秒前
21秒前
我是老大应助liu采纳,获得10
21秒前
领导范儿应助小熊软糖采纳,获得10
21秒前
华仔应助kevin采纳,获得10
22秒前
23秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048