How Rough Is the Path? Terrain Traversability Estimation for Local and Global Path Planning

地形 运动规划 计算机科学 点云 人工智能 惯性测量装置 卷积神经网络 移动机器人 计算机视觉 机器人 地理 地图学
作者
Gabriel Waibel,Tobias Löw,Mathieu Nass,David Howard,Tirthankar Bandyopadhyay,Paulo Borges
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 16462-16473 被引量:26
标识
DOI:10.1109/tits.2022.3150328
摘要

Perception and interpretation of the terrain is essential for robot navigation, particularly in off-road areas, where terrain characteristics can be highly variable. When planning a path, features such as the terrain gradient and roughness should be considered, and they can jointly represent the traversability cost of the terrain. Despite this range of contributing factors, most cost maps are currently binary in nature, solely indicating traversible versus non-traversible areas. This work presents a joint local and global planning methodology for building continuous cost maps using LIDAR, based on a novel traversability representation of the environment. We investigate two approaches. The first, a statistical approach, computes terrain cost directly from the point cloud. The second, a learning-based approach, predicts an IMU response solely from geometric point cloud data using a 2D-Convolutional-LSTM neural network. This allows us to estimate the cost of a patch without directly driving over it, based on a data set that maps IMU signals to point cloud patches. Based on the terrain analysis, two continuous cost maps are generated to jointly select the optimal path considering distance and traversability cost for local navigation. We present a real-time terrain analysis strategy applicable for local planning, and furthermore demonstrate the straightforward application of the same approach in batch mode for global planning. Off-road autonomous driving experiments in a large and hybrid site illustrate the applicability of the method. We have made the code available online for users to test the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liujinzhong完成签到,获得积分10
1秒前
可爱的函函应助coffee采纳,获得10
1秒前
ldkshifo完成签到,获得积分10
1秒前
lr完成签到 ,获得积分10
1秒前
sdshi发布了新的文献求助10
1秒前
研友_VZG7GZ应助keyanqianjin采纳,获得10
2秒前
2秒前
2秒前
搞怪的友瑶完成签到,获得积分10
3秒前
内向凌波完成签到 ,获得积分10
3秒前
澈千子完成签到,获得积分10
3秒前
坦率灵槐应助lyang采纳,获得10
3秒前
hhhhh完成签到,获得积分10
3秒前
yyy发布了新的文献求助10
4秒前
4秒前
科研通AI6应助难度采纳,获得30
5秒前
HUO发布了新的文献求助10
6秒前
轨迹应助HJJHJH采纳,获得20
6秒前
南非的猫发布了新的文献求助10
6秒前
王雪完成签到 ,获得积分20
6秒前
请问果辐蓉小姐在吗完成签到 ,获得积分10
6秒前
雨恋凡尘完成签到,获得积分0
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
SS2D完成签到,获得积分10
8秒前
调皮访枫完成签到,获得积分10
8秒前
Alice完成签到,获得积分10
8秒前
8秒前
Ali完成签到 ,获得积分10
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得30
8秒前
SciGPT应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659492
求助须知:如何正确求助?哪些是违规求助? 4828970
关于积分的说明 15087038
捐赠科研通 4818112
什么是DOI,文献DOI怎么找? 2578548
邀请新用户注册赠送积分活动 1533152
关于科研通互助平台的介绍 1491834