Inductive Representation Learning on Dynamic Stock Co-Movement Graphs for Stock Predictions

计算机科学 库存(枪支) 股票市场 杠杆(统计) 特征学习 计量经济学 人工智能 数学 机械工程 生物 工程类 古生物学
作者
Hu Tian,Xiaolong Zheng,Kang Zhao,Maggie Wenjing Liu,Daniel Zeng
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 1940-1957 被引量:23
标识
DOI:10.1287/ijoc.2022.1172
摘要

Co-movement among individual firms’ stock prices can reflect complex interfirm relationships. This paper proposes a novel method to leverage such relationships for stock price predictions by adopting inductive graph representation learning on dynamic stock graphs constructed based on historical stock price co-movement. To learn node representations from such dynamic graphs for better stock predictions, we propose the hybrid-attention dynamic graph neural network, an inductive graph representation learning method. We also extended mini-batch gradient descent to inductive representation learning on dynamic stock graphs so that the model can update parameters over mini-batch stock graphs with higher training efficiency. Extensive experiments on stocks from different markets and trading simulations demonstrate that the proposed method significantly improves stock predictions. The proposed method can have important implications for the management of financial portfolios and investment risk. Summary of Contribution: Accurate predictions of stock prices have important implications for financial decisions. In today’s economy, individual firms are increasingly connected via different types of relationships. As a result, firms’ stock prices often feature synchronous co-movement patterns. This paper represents the first effort to leverage such phenomena to construct dynamic stock graphs for stock predictions. We develop hybrid-attention dynamic graph neural network (HAD-GNN), an inductive graph representation learning framework for dynamic stock graphs to incorporate temporal and graph attention mechanisms. To improve the learning efficiency of HAD-GNN, we also extend the mini-batch gradient descent to inductive representation learning on such dynamic graphs and adopt a t-batch training mechanism (t-BTM). We demonstrate the effectiveness of our new approach via experiments based on real-world data and simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aniu发布了新的文献求助10
刚刚
孙福禄应助暖冬22采纳,获得10
1秒前
1秒前
陈静123发布了新的文献求助10
1秒前
ynchendt完成签到,获得积分10
2秒前
伶俐的安波完成签到,获得积分10
2秒前
停婷发布了新的文献求助10
2秒前
leisure发布了新的文献求助10
2秒前
完美世界应助HGQ采纳,获得10
2秒前
聪明的三问完成签到,获得积分10
3秒前
小young完成签到 ,获得积分10
4秒前
霸气乘风发布了新的文献求助20
5秒前
HenryXiao发布了新的文献求助10
6秒前
科研通AI2S应助wmx采纳,获得10
6秒前
6秒前
yaoyulin完成签到,获得积分20
7秒前
xyx945应助苹果采纳,获得10
7秒前
羞涩的怀蝶完成签到,获得积分10
8秒前
舍瓦完成签到,获得积分10
8秒前
8秒前
Hello应助书虫采纳,获得10
9秒前
9秒前
FashionBoy应助leisure采纳,获得10
10秒前
11秒前
11秒前
11秒前
12秒前
与山发布了新的文献求助10
12秒前
zyw发布了新的文献求助10
13秒前
朦胧的晓山完成签到,获得积分10
13秒前
万能图书馆应助steventj采纳,获得10
13秒前
船船应助libobobo采纳,获得10
13秒前
囚徒发布了新的文献求助10
13秒前
年年完成签到,获得积分10
14秒前
14秒前
GingerF应助CC采纳,获得80
14秒前
HGQ发布了新的文献求助10
14秒前
15秒前
爱听歌的书本完成签到,获得积分10
15秒前
邹万恶发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650