Inductive Representation Learning on Dynamic Stock Co-Movement Graphs for Stock Predictions

计算机科学 库存(枪支) 股票市场 杠杆(统计) 特征学习 计量经济学 人工智能 数学 机械工程 生物 工程类 古生物学
作者
Hu Tian,Xiaolong Zheng,Kang Zhao,Maggie Wenjing Liu,Daniel Zeng
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 1940-1957 被引量:17
标识
DOI:10.1287/ijoc.2022.1172
摘要

Co-movement among individual firms’ stock prices can reflect complex interfirm relationships. This paper proposes a novel method to leverage such relationships for stock price predictions by adopting inductive graph representation learning on dynamic stock graphs constructed based on historical stock price co-movement. To learn node representations from such dynamic graphs for better stock predictions, we propose the hybrid-attention dynamic graph neural network, an inductive graph representation learning method. We also extended mini-batch gradient descent to inductive representation learning on dynamic stock graphs so that the model can update parameters over mini-batch stock graphs with higher training efficiency. Extensive experiments on stocks from different markets and trading simulations demonstrate that the proposed method significantly improves stock predictions. The proposed method can have important implications for the management of financial portfolios and investment risk. Summary of Contribution: Accurate predictions of stock prices have important implications for financial decisions. In today’s economy, individual firms are increasingly connected via different types of relationships. As a result, firms’ stock prices often feature synchronous co-movement patterns. This paper represents the first effort to leverage such phenomena to construct dynamic stock graphs for stock predictions. We develop hybrid-attention dynamic graph neural network (HAD-GNN), an inductive graph representation learning framework for dynamic stock graphs to incorporate temporal and graph attention mechanisms. To improve the learning efficiency of HAD-GNN, we also extend the mini-batch gradient descent to inductive representation learning on such dynamic graphs and adopt a t-batch training mechanism (t-BTM). We demonstrate the effectiveness of our new approach via experiments based on real-world data and simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助gaterina采纳,获得10
1秒前
聂先生完成签到,获得积分10
2秒前
3秒前
3秒前
hhll完成签到,获得积分10
3秒前
43呀完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
zyj发布了新的文献求助10
5秒前
苏卿应助towerman采纳,获得20
5秒前
坚强的夏瑶完成签到,获得积分20
5秒前
此卷12138完成签到,获得积分20
5秒前
愉快谷芹完成签到 ,获得积分10
5秒前
饼大王完成签到,获得积分10
6秒前
6秒前
卡卡光波完成签到,获得积分10
6秒前
小张在进步完成签到,获得积分10
6秒前
清秀夏寒完成签到,获得积分10
7秒前
健忘丹珍完成签到,获得积分10
7秒前
文静的白开水完成签到,获得积分10
7秒前
makabaka完成签到 ,获得积分10
8秒前
ztt发布了新的文献求助10
8秒前
dominate发布了新的文献求助20
9秒前
10秒前
10秒前
机灵的衬衫完成签到 ,获得积分10
10秒前
Yanan完成签到,获得积分10
11秒前
Akim应助轻松的芷烟采纳,获得10
11秒前
12秒前
12秒前
豪哥大大发布了新的文献求助10
12秒前
zyj完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
temp完成签到 ,获得积分10
13秒前
iko完成签到,获得积分10
13秒前
天天快乐应助科研通管家采纳,获得10
14秒前
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661487
求助须知:如何正确求助?哪些是违规求助? 3222499
关于积分的说明 9746283
捐赠科研通 2932184
什么是DOI,文献DOI怎么找? 1605480
邀请新用户注册赠送积分活动 757926
科研通“疑难数据库(出版商)”最低求助积分说明 734579