已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Inductive Representation Learning on Dynamic Stock Co-Movement Graphs for Stock Predictions

计算机科学 库存(枪支) 股票市场 杠杆(统计) 特征学习 计量经济学 人工智能 数学 机械工程 生物 工程类 古生物学
作者
Hu Tian,Xiaolong Zheng,Kang Zhao,Maggie Wenjing Liu,Daniel Zeng
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 1940-1957 被引量:17
标识
DOI:10.1287/ijoc.2022.1172
摘要

Co-movement among individual firms’ stock prices can reflect complex interfirm relationships. This paper proposes a novel method to leverage such relationships for stock price predictions by adopting inductive graph representation learning on dynamic stock graphs constructed based on historical stock price co-movement. To learn node representations from such dynamic graphs for better stock predictions, we propose the hybrid-attention dynamic graph neural network, an inductive graph representation learning method. We also extended mini-batch gradient descent to inductive representation learning on dynamic stock graphs so that the model can update parameters over mini-batch stock graphs with higher training efficiency. Extensive experiments on stocks from different markets and trading simulations demonstrate that the proposed method significantly improves stock predictions. The proposed method can have important implications for the management of financial portfolios and investment risk. Summary of Contribution: Accurate predictions of stock prices have important implications for financial decisions. In today’s economy, individual firms are increasingly connected via different types of relationships. As a result, firms’ stock prices often feature synchronous co-movement patterns. This paper represents the first effort to leverage such phenomena to construct dynamic stock graphs for stock predictions. We develop hybrid-attention dynamic graph neural network (HAD-GNN), an inductive graph representation learning framework for dynamic stock graphs to incorporate temporal and graph attention mechanisms. To improve the learning efficiency of HAD-GNN, we also extend the mini-batch gradient descent to inductive representation learning on such dynamic graphs and adopt a t-batch training mechanism (t-BTM). We demonstrate the effectiveness of our new approach via experiments based on real-world data and simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北海完成签到 ,获得积分10
1秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
杳鸢应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
桐桐应助结实的德地采纳,获得10
8秒前
Mak关闭了Mak文献求助
10秒前
勤奋曼雁完成签到 ,获得积分10
13秒前
JavedAli完成签到,获得积分10
14秒前
14秒前
深情安青应助小杨采纳,获得10
15秒前
小彬完成签到 ,获得积分10
16秒前
peterwei272完成签到 ,获得积分10
16秒前
CY完成签到,获得积分10
18秒前
18秒前
yiduo发布了新的文献求助10
19秒前
机智的思远完成签到 ,获得积分10
19秒前
paul完成签到,获得积分10
19秒前
doublemeat发布了新的文献求助10
20秒前
20秒前
结实的半双给结实的半双的求助进行了留言
21秒前
Tumumu完成签到,获得积分10
21秒前
方方别方完成签到 ,获得积分10
21秒前
易玉燕发布了新的文献求助10
21秒前
小彭友完成签到,获得积分10
22秒前
CY发布了新的文献求助10
22秒前
奋斗的杰发布了新的文献求助10
25秒前
Liangyong_Fu完成签到 ,获得积分10
28秒前
领导范儿应助zhaojj采纳,获得10
30秒前
wmhappy完成签到 ,获得积分10
31秒前
32秒前
33秒前
iWatchTheMoon应助外向的斑马采纳,获得10
34秒前
夜枫完成签到 ,获得积分10
35秒前
大力黑米完成签到 ,获得积分10
36秒前
奋斗的杰完成签到,获得积分10
37秒前
AaronW应助qiu采纳,获得10
38秒前
zhong发布了新的文献求助10
39秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162149
求助须知:如何正确求助?哪些是违规求助? 2813236
关于积分的说明 7899361
捐赠科研通 2472473
什么是DOI,文献DOI怎么找? 1316444
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142