A Survey on Vision Transformer

计算机科学 人工智能 变压器 卷积神经网络 归纳偏置 机器视觉 人工神经网络 机器学习 计算机视觉 工程类 多任务学习 电气工程 系统工程 电压 任务(项目管理)
作者
Kai Han,Yunhe Wang,Hanting Chen,Xinghao Chen,Jianyuan Guo,Zhenhua Liu,Yehui Tang,An Xiao,Chunjing Xu,Yixing Xu,Zhaohui Yang,Yiman Zhang,Dacheng Tao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 87-110 被引量:1471
标识
DOI:10.1109/tpami.2022.3152247
摘要

Transformer, first applied to the field of natural language processing, is a type of deep neural network mainly based on the self-attention mechanism. Thanks to its strong representation capabilities, researchers are looking at ways to apply transformer to computer vision tasks. In a variety of visual benchmarks, transformer-based models perform similar to or better than other types of networks such as convolutional and recurrent neural networks. Given its high performance and less need for vision-specific inductive bias, transformer is receiving more and more attention from the computer vision community. In this paper, we review these vision transformer models by categorizing them in different tasks and analyzing their advantages and disadvantages. The main categories we explore include the backbone network, high/mid-level vision, low-level vision, and video processing. We also include efficient transformer methods for pushing transformer into real device-based applications. Furthermore, we also take a brief look at the self-attention mechanism in computer vision, as it is the base component in transformer. Toward the end of this paper, we discuss the challenges and provide several further research directions for vision transformers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到,获得积分10
1秒前
没有逗应助阿呆采纳,获得10
2秒前
hailiangzheng发布了新的文献求助10
4秒前
阿巴阿巴阿巴完成签到,获得积分10
7秒前
科研通AI2S应助宗语雪采纳,获得10
8秒前
一煽情完成签到,获得积分10
8秒前
9秒前
许多多完成签到,获得积分10
9秒前
搜集达人应助谦让的小姜采纳,获得10
10秒前
yzlsci发布了新的文献求助260
11秒前
12秒前
1989发布了新的文献求助10
14秒前
15秒前
15秒前
小不溜完成签到,获得积分10
15秒前
16秒前
立里完成签到,获得积分10
17秒前
慕青应助阿巴阿巴阿巴采纳,获得10
17秒前
万能图书馆应助LIKO采纳,获得10
18秒前
害羞聋五发布了新的文献求助10
19秒前
852应助Su采纳,获得10
21秒前
小萌完成签到,获得积分10
21秒前
22秒前
大个应助踏实的从寒采纳,获得10
23秒前
GQ完成签到,获得积分10
23秒前
安若完成签到 ,获得积分20
24秒前
24秒前
24秒前
xiaoyu完成签到,获得积分10
25秒前
27秒前
无花果应助白日幻想家采纳,获得10
28秒前
阳佟天川完成签到,获得积分10
28秒前
科目三应助able采纳,获得10
28秒前
29秒前
烟花应助曲夜白采纳,获得10
30秒前
31秒前
北雁发布了新的文献求助10
32秒前
33秒前
34秒前
褚人达完成签到,获得积分10
34秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053