Sepsis: a failing starvation response

败血症 饥饿 炎症 医学 生物 免疫学 生物信息学 重症监护医学 内科学
作者
Jolien Vandewalle,Claude Libert
出处
期刊:Trends in Endocrinology and Metabolism [Elsevier]
卷期号:33 (4): 292-304 被引量:46
标识
DOI:10.1016/j.tem.2022.01.006
摘要

Sepsis is associated with severe metabolic dysregulation. Two key metabolic transcription factors, GR and PPARα, are dysfunctional in sepsis, leading to failure of the starvation response. Metabolites such as lactate and free fatty acids accumulate and contribute to disease progression in sepsis. Further characterization of metabolic dysregulation might uncover novel therapeutic targets for treating sepsis patients. Sepsis is involved in ~ 20% of annual global deaths. Despite decades of research, the current management of sepsis remains supportive rather than curative. Clinical trials in sepsis have mainly been focused on targeting the inflammatory pathway, but without success. Recent data indicate that metabolic dysregulation takes place in sepsis, and targeting metabolic pathways might hold much promise for the management of sepsis. Sepsis yields a strong starvation response, including the release of high-energy metabolites such as lactate and free fatty acids. However, the activity of two major transcription factors, GR and PPARα, is downregulated in hepatocytes, leading to the accumulation and toxicity of metabolites that, moreover, fail to be transformed into useful molecules such as glucose and ketones. We review the literature and suggest mechanisms and potential therapeutic targets that might prevent or revert the fatal metabolic dysregulation in sepsis. Sepsis is involved in ~ 20% of annual global deaths. Despite decades of research, the current management of sepsis remains supportive rather than curative. Clinical trials in sepsis have mainly been focused on targeting the inflammatory pathway, but without success. Recent data indicate that metabolic dysregulation takes place in sepsis, and targeting metabolic pathways might hold much promise for the management of sepsis. Sepsis yields a strong starvation response, including the release of high-energy metabolites such as lactate and free fatty acids. However, the activity of two major transcription factors, GR and PPARα, is downregulated in hepatocytes, leading to the accumulation and toxicity of metabolites that, moreover, fail to be transformed into useful molecules such as glucose and ketones. We review the literature and suggest mechanisms and potential therapeutic targets that might prevent or revert the fatal metabolic dysregulation in sepsis. reduced food intake. the gold-standard method for inducing peritonitis in animal models. It involves a combination of three insults: tissue trauma through laparotomy, necrosis caused by ligation of the cecum, and infection due to leakage of peritoneal microbial flora into the peritoneum. a metabolic pathway in which lactate produced by anaerobic glycolysis in muscle moves to the liver and is converted to glucose, which in turn is metabolized back to lactate in muscle. non-esterified fatty acids that are released by the hydrolysis of triglycerides in adipose tissues. FFAs can be used as an immediate source of energy by many organs and can be converted into ketone bodies by the liver. the metabolic process by which glucose is generated from smaller precursors such as amino acids and glycerol. the generation of ATP through glucose degradation that is usually associated with anaerobic conditions. a means that animals use to conserve energy (by reducing activity and/or metabolism) and survive adverse weather conditions or lack of food. a metabolite that serves as a signal transducer to regulate immune cell function and disease outcome. the production of ketone bodies (KBs) by breaking down fatty acids and ketogenic amino acids. KBs generated by ketogenesis supply energy to some organs, especially the brain. the addition of a lactyl group to a molecule. the process of breaking down of lipids into fatty acids and glycerol. the accumulation of lipid intermediates in tissues other than adipose tissues that cause cell damage in these tissues. a metabolic pathway in which fatty acids are metabolized to generate energy. malnutrition following, for example, anorexia, gastrointestinal disease, cancer, or coma. The metabolic response to starvation is to provide energy via catabolism of body tissues (muscle, adipose tissue, liver).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿达完成签到,获得积分10
刚刚
owlhealth完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得30
3秒前
孔骁完成签到,获得积分10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
cc应助科研通管家采纳,获得20
3秒前
Owen应助科研通管家采纳,获得10
3秒前
不配.应助科研通管家采纳,获得100
3秒前
大模型应助科研通管家采纳,获得10
3秒前
樱桃猴子应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
沉静青旋完成签到,获得积分20
3秒前
4秒前
洛洛完成签到,获得积分10
6秒前
美好斓发布了新的文献求助10
6秒前
唯安完成签到 ,获得积分10
7秒前
时米米米发布了新的文献求助10
7秒前
冯娇娇完成签到,获得积分10
8秒前
keyaner发布了新的文献求助30
9秒前
12秒前
13秒前
追寻紫安应助削菠萝采纳,获得10
13秒前
13秒前
朴实雨竹发布了新的文献求助200
13秒前
冯娇娇发布了新的文献求助10
13秒前
16秒前
青栀发布了新的文献求助10
17秒前
暮凝发布了新的文献求助20
17秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138255
求助须知:如何正确求助?哪些是违规求助? 2789256
关于积分的说明 7790627
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300583
科研通“疑难数据库(出版商)”最低求助积分说明 625969
版权声明 601053