光伏
材料科学
钙钛矿(结构)
晶界
光伏系统
光电子学
纳米技术
复合材料
电气工程
化学工程
微观结构
工程类
作者
Chun‐Hao Chen,Zhenhuang Su,Yanhui Lou,Yan‐Jun Yu,Kai‐Li Wang,Gen‐Lin Liu,Yiran Shi,Jing Chen,J. C. Cao,Liang Zhang,Xingyu Gao,Zhao‐Kui Wang
标识
DOI:10.1002/adma.202200320
摘要
Perovskite photovoltaics are strong potential candidates to drive low-power off-grid electronics for indoor applications. Compared with rigid devices, flexible perovskite devices can provide a more suitable surface for indoor small electronic devices, enabling them have a broader indoor application prospect. However, the mechanical stability of flexible perovskite photovoltaics is an urgent issue solved. Herein, a kind of 3D crosslinking agent named borax is selected to carry out grain boundary penetration treatment on perovskite film to realize full-dimensional stress release. This strategy improves the mechanical and phase stabilities of perovskite films subjected to external forces or large temperature changes. The fabricated perovskite photovoltaics deliver a champion power conversion efficiency (PCE) of 21.63% under AM 1.5G illumination, which is the highest one to date. The merit of low trap states under weak light makes the devices present a superior indoor PCE of 31.85% under 1062 lux (LED, 2956 K), which is currently the best flexible perovskite indoor photovoltaic device. This work provides a full-dimensional grain boundary stress release strategy for highly stable flexible perovskite indoor photovoltaics.
科研通智能强力驱动
Strongly Powered by AbleSci AI