Ultra-high-strength engineered/strain-hardening cementitious composites (ECC/SHCC): Material design and effect of fiber hybridization

材料科学 极限抗拉强度 复合材料 延展性(地球科学) 抗压强度 应变硬化指数 开裂 耐久性 胶凝的 拉伸应变 水泥 蠕动
作者
Bo-Tao Huang,Ji-Xiang Zhu,Ke-Fan Weng,Victor C. Li,Jian‐Guo Dai
出处
期刊:Cement & Concrete Composites [Elsevier]
卷期号:129: 104464-104464 被引量:116
标识
DOI:10.1016/j.cemconcomp.2022.104464
摘要

It is well known that an increase in the compressive strength of cementitious composites is usually accompanied by a loss of tensile ductility. Designing and developing ultra-high-strength cementitious composites (e.g., ≥200 MPa) with high tensile strain capacity (e.g., ≥3%) and excellent crack resistance (e.g., crack width ≤100 μm) remain challenging. In this study, a series of ultra-high-strength Engineered Cementitious Composites (UHS-ECC) with a compressive strength over 210 MPa, a tensile strain capacity of 3–6% (i.e., 300–600 times that of ordinary concrete), and a fine crack width of 67–81 μm (at the ultimate tensile strain) were achieved. Hybrid design of fiber reinforcement and matrix for UHS-ECC was adopted by combining the ECC and ultra-high-performance concrete (UHPC) design concepts, and the effect of fiber hybridization and aspect ratio on the mechanical behavior of UHS-ECC was comprehensively investigated. The overall performance of UHS-ECC was assessed and compared with the existing high-strength ECC and strain-hardening UHPC, and it was found that the currently designed UHS-ECC recorded the best overall performance among the existing materials. Finally, the multiple cracking behavior of UHS-ECC was analyzed and modeled based on a probabilistic approach to evaluate its critical tensile strain for durability control in practical applications. The results of this study have pushed the performance envelope of both ECC and UHPC materials and provided a basis for developing cementitious composites with simultaneously ultra-high compressive strength, ultra-high tensile ductility, and excellent crack resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助乐园采纳,获得10
刚刚
1秒前
个木发布了新的文献求助10
1秒前
谨慎不二发布了新的文献求助10
1秒前
CodeCraft应助lishunzcqty采纳,获得10
2秒前
青丝落花完成签到,获得积分10
2秒前
化学小学生完成签到,获得积分10
2秒前
3秒前
完美世界应助高高迎蓉采纳,获得10
3秒前
已拿捏催化剂完成签到 ,获得积分10
3秒前
WJM发布了新的文献求助10
3秒前
左丘忻完成签到,获得积分10
3秒前
4秒前
端庄的萝发布了新的文献求助20
4秒前
孟严青完成签到,获得积分10
4秒前
livra1058完成签到,获得积分10
4秒前
wonderting完成签到,获得积分10
4秒前
无敌小汐完成签到,获得积分10
5秒前
5秒前
圈圈发布了新的文献求助10
5秒前
EW完成签到,获得积分10
5秒前
6秒前
金鸡奖完成签到,获得积分10
6秒前
研友_LNB7rL完成签到,获得积分10
6秒前
11发布了新的文献求助10
7秒前
经法发布了新的文献求助10
7秒前
bjbbh完成签到,获得积分10
8秒前
Skyrin发布了新的文献求助10
8秒前
8秒前
阿蒙完成签到,获得积分10
9秒前
传奇3应助个木采纳,获得10
9秒前
9秒前
ShawnWei完成签到,获得积分10
9秒前
飘逸秋荷完成签到,获得积分10
9秒前
年年完成签到,获得积分10
9秒前
10秒前
10秒前
四季刻歌发布了新的文献求助20
10秒前
乐乐应助努力学习采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678