Ultra-high-strength engineered/strain-hardening cementitious composites (ECC/SHCC): Material design and effect of fiber hybridization

材料科学 极限抗拉强度 复合材料 延展性(地球科学) 抗压强度 应变硬化指数 开裂 耐久性 胶凝的 拉伸应变 水泥 蠕动
作者
Bo-Tao Huang,Ji-Xiang Zhu,Ke-Fan Weng,Victor C. Li,Jian‐Guo Dai
出处
期刊:Cement & Concrete Composites [Elsevier]
卷期号:129: 104464-104464 被引量:116
标识
DOI:10.1016/j.cemconcomp.2022.104464
摘要

It is well known that an increase in the compressive strength of cementitious composites is usually accompanied by a loss of tensile ductility. Designing and developing ultra-high-strength cementitious composites (e.g., ≥200 MPa) with high tensile strain capacity (e.g., ≥3%) and excellent crack resistance (e.g., crack width ≤100 μm) remain challenging. In this study, a series of ultra-high-strength Engineered Cementitious Composites (UHS-ECC) with a compressive strength over 210 MPa, a tensile strain capacity of 3–6% (i.e., 300–600 times that of ordinary concrete), and a fine crack width of 67–81 μm (at the ultimate tensile strain) were achieved. Hybrid design of fiber reinforcement and matrix for UHS-ECC was adopted by combining the ECC and ultra-high-performance concrete (UHPC) design concepts, and the effect of fiber hybridization and aspect ratio on the mechanical behavior of UHS-ECC was comprehensively investigated. The overall performance of UHS-ECC was assessed and compared with the existing high-strength ECC and strain-hardening UHPC, and it was found that the currently designed UHS-ECC recorded the best overall performance among the existing materials. Finally, the multiple cracking behavior of UHS-ECC was analyzed and modeled based on a probabilistic approach to evaluate its critical tensile strain for durability control in practical applications. The results of this study have pushed the performance envelope of both ECC and UHPC materials and provided a basis for developing cementitious composites with simultaneously ultra-high compressive strength, ultra-high tensile ductility, and excellent crack resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小亿发布了新的文献求助10
1秒前
SciGPT应助MY采纳,获得10
1秒前
3秒前
tent01发布了新的文献求助10
4秒前
6秒前
海亦发布了新的文献求助10
7秒前
8秒前
10秒前
11秒前
12秒前
12秒前
lnd发布了新的文献求助10
12秒前
充电宝应助Layli采纳,获得10
14秒前
14秒前
SESAME复合体完成签到,获得积分10
15秒前
15秒前
落雁沙发布了新的文献求助10
16秒前
16秒前
17秒前
grisco发布了新的文献求助10
18秒前
LIX发布了新的文献求助10
19秒前
大妈发布了新的文献求助10
20秒前
20秒前
宝海青完成签到,获得积分10
21秒前
Steven发布了新的文献求助10
22秒前
fan完成签到,获得积分10
23秒前
MY发布了新的文献求助10
23秒前
希望天下0贩的0应助grisco采纳,获得10
25秒前
科研通AI2S应助落雁沙采纳,获得10
26秒前
hh完成签到,获得积分20
27秒前
骆驼祥子完成签到,获得积分10
27秒前
圣甲虫完成签到 ,获得积分10
28秒前
靓丽的怜雪完成签到,获得积分20
28秒前
29秒前
30秒前
缓慢犀牛完成签到,获得积分10
30秒前
31秒前
任性翠安完成签到 ,获得积分10
34秒前
36秒前
科研通AI2S应助苏木采纳,获得10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136234
求助须知:如何正确求助?哪些是违规求助? 2787225
关于积分的说明 7780556
捐赠科研通 2443265
什么是DOI,文献DOI怎么找? 1298990
科研通“疑难数据库(出版商)”最低求助积分说明 625299
版权声明 600870