材料科学
极限抗拉强度
复合材料
延展性(地球科学)
抗压强度
应变硬化指数
开裂
耐久性
胶凝的
拉伸应变
水泥
蠕动
作者
Bo-Tao Huang,Ji-Xiang Zhu,Ke-Fan Weng,Victor C. Li,Jian‐Guo Dai
标识
DOI:10.1016/j.cemconcomp.2022.104464
摘要
It is well known that an increase in the compressive strength of cementitious composites is usually accompanied by a loss of tensile ductility. Designing and developing ultra-high-strength cementitious composites (e.g., ≥200 MPa) with high tensile strain capacity (e.g., ≥3%) and excellent crack resistance (e.g., crack width ≤100 μm) remain challenging. In this study, a series of ultra-high-strength Engineered Cementitious Composites (UHS-ECC) with a compressive strength over 210 MPa, a tensile strain capacity of 3–6% (i.e., 300–600 times that of ordinary concrete), and a fine crack width of 67–81 μm (at the ultimate tensile strain) were achieved. Hybrid design of fiber reinforcement and matrix for UHS-ECC was adopted by combining the ECC and ultra-high-performance concrete (UHPC) design concepts, and the effect of fiber hybridization and aspect ratio on the mechanical behavior of UHS-ECC was comprehensively investigated. The overall performance of UHS-ECC was assessed and compared with the existing high-strength ECC and strain-hardening UHPC, and it was found that the currently designed UHS-ECC recorded the best overall performance among the existing materials. Finally, the multiple cracking behavior of UHS-ECC was analyzed and modeled based on a probabilistic approach to evaluate its critical tensile strain for durability control in practical applications. The results of this study have pushed the performance envelope of both ECC and UHPC materials and provided a basis for developing cementitious composites with simultaneously ultra-high compressive strength, ultra-high tensile ductility, and excellent crack resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI