Data Mapping and the Prediction of Common Cause Failure Probability

组分(热力学) 实现(概率) 事件(粒子物理) 可靠性工程 计算机科学 共因失效 概率分布 样品(材料) 统计 数学 工程类 共同事业与特殊事业 化学 物理 热力学 量子力学 色谱法
作者
Liyang Xie,Zhou Jing-lun,Xuemin Wang
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:54 (2): 291-296 被引量:28
标识
DOI:10.1109/tr.2005.847244
摘要

General failure event data from various sources are often used to estimate the failure probability for the system of interest, especially when s-dependence exists among component failures, where common cause failure plays an important role. Failure event data from different sources must be reasonably explained, and correctly applied, so that the information about load environment, and component/system property can be used correctly. In estimating the probability for s-dependent system failure, both the load distribution, and component strength distribution are much more important than component failure probability index. Based on the relationship among different multiple failures, this paper presents a data mapping approach to estimating dependent system failure probability through multiple failure event data of other systems with different sizes. The underlying assumption on data mapping is that failures of different multiples (including single) are correlated with each other for a group of components if they are subjected to the same or correlated random load (loads). Taking the situation of a group of s-independent components operating under the same random load as an example, the likelihood of a component failure at a trial depends not only on the strength of the individual component but also on the realization of the random load. The likelihood of a specific multiple failure at a trial is also determined by both the component strengths, and the realization of the random load. Furthermore, if a larger load sample appears, the likelihoods for failure are higher. Conversely, if a smaller load sample appears, the likelihoods of failure are lower. We emphasized in this paper that system failure event data should be interpreted & applied under the principle that various multiple failures are distinguished by their respective failure multiplicity and/or system size, and are inherently interrelated through correlated load environments. The approach starts with determining the load parameter, and component strength parameter according to multiple (including single) failure event data available. Then, these parameters are used to calculate the probability of multiple failures for systems of different sizes. This approach is applicable to predict high multiple failure probability based on low multiple failure event data. Examples of estimating multiple failure probabilities of EDG (emergency diesel generators) with mapped data illustrate that the proposed approach is desirable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
111完成签到,获得积分10
3秒前
希希发布了新的文献求助10
3秒前
从容的钢铁侠完成签到,获得积分20
5秒前
在水一方应助lijiauyi1994采纳,获得10
5秒前
多多发SCI发布了新的文献求助30
5秒前
量子星尘发布了新的文献求助10
6秒前
小小发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
英姑应助vsbsjj采纳,获得10
9秒前
chong0919完成签到,获得积分10
9秒前
memo应助默默的巧蕊采纳,获得10
10秒前
12秒前
14秒前
端庄的友瑶完成签到,获得积分10
15秒前
17秒前
十二完成签到,获得积分10
18秒前
18秒前
18秒前
闪999发布了新的文献求助10
18秒前
貔貅完成签到,获得积分10
19秒前
orixero应助杜客采纳,获得10
22秒前
22秒前
旗树树发布了新的文献求助10
22秒前
mmmaosheng完成签到,获得积分10
22秒前
xxfsx应助田猛采纳,获得10
22秒前
yegechuanqi发布了新的文献求助10
23秒前
闪999完成签到,获得积分10
24秒前
24秒前
24秒前
26秒前
scxl2000完成签到,获得积分10
27秒前
28秒前
28秒前
思垢发布了新的文献求助10
30秒前
30秒前
sss发布了新的文献求助10
30秒前
小二郎应助林ci采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740