Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization

帕累托原理 最优化问题 帕累托最优 计算机科学 选择(遗传算法)
作者
Ivo Couckuyt,Dirk Deschrijver,Tom Dhaene
出处
期刊:Journal of Global Optimization [Springer Nature]
卷期号:60 (3): 575-594 被引量:173
标识
DOI:10.1007/s10898-013-0118-2
摘要

The use of surrogate based optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, “real-world” problems often consist of multiple, conflicting objectives leading to a set of competitive solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of weighting and aggregating the costs upfront). Most of the work in multiobjective optimization is focused on multiobjective evolutionary algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as multiobjective surrogate-based optimization, may prove to be even more worthwhile than SBO methods to expedite the optimization of computational expensive systems. In this paper, the authors propose the efficient multiobjective optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the probability of improvement and expected improvement criteria to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II, SPEA2 and SMS-EMOA multiobjective optimization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hkl1542发布了新的文献求助50
刚刚
1秒前
2秒前
KYN完成签到,获得积分10
3秒前
3秒前
桐桐应助叶未晞yi采纳,获得10
3秒前
3秒前
su发布了新的文献求助10
4秒前
123456789完成签到,获得积分10
6秒前
炙热的如柏完成签到,获得积分20
6秒前
7秒前
8秒前
HWei完成签到,获得积分10
8秒前
Ryan完成签到,获得积分10
8秒前
9秒前
Jzhang应助丙队长采纳,获得10
11秒前
12秒前
GXY发布了新的文献求助30
13秒前
Lucas应助专注秋尽采纳,获得10
13秒前
13秒前
754完成签到,获得积分10
13秒前
16秒前
学习猴发布了新的文献求助10
16秒前
充电宝应助炙热的如柏采纳,获得10
17秒前
所所应助qzaima采纳,获得10
17秒前
米兰达完成签到 ,获得积分0
18秒前
xg发布了新的文献求助10
20秒前
Loooong应助Ni采纳,获得10
21秒前
21秒前
WZ0904发布了新的文献求助10
21秒前
顾矜应助博ge采纳,获得10
23秒前
23秒前
Lotus发布了新的文献求助10
24秒前
25秒前
仁爱仙人掌完成签到,获得积分10
27秒前
ywang发布了新的文献求助10
27秒前
29秒前
29秒前
29秒前
ewqw关注了科研通微信公众号
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824