Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization

帕累托原理 最优化问题 帕累托最优 计算机科学 选择(遗传算法)
作者
Ivo Couckuyt,Dirk Deschrijver,Tom Dhaene
出处
期刊:Journal of Global Optimization [Springer Science+Business Media]
卷期号:60 (3): 575-594 被引量:173
标识
DOI:10.1007/s10898-013-0118-2
摘要

The use of surrogate based optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, “real-world” problems often consist of multiple, conflicting objectives leading to a set of competitive solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of weighting and aggregating the costs upfront). Most of the work in multiobjective optimization is focused on multiobjective evolutionary algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as multiobjective surrogate-based optimization, may prove to be even more worthwhile than SBO methods to expedite the optimization of computational expensive systems. In this paper, the authors propose the efficient multiobjective optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the probability of improvement and expected improvement criteria to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II, SPEA2 and SMS-EMOA multiobjective optimization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ty完成签到,获得积分10
2秒前
zehua309完成签到,获得积分10
3秒前
火星上含芙完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
掌门发布了新的文献求助10
6秒前
愉快的花卷完成签到,获得积分10
6秒前
少言完成签到,获得积分10
8秒前
kiko完成签到,获得积分10
9秒前
隐形惜筠完成签到 ,获得积分10
11秒前
黑眼圈完成签到,获得积分10
15秒前
123发布了新的文献求助10
17秒前
18秒前
19秒前
又又妈妈完成签到,获得积分10
19秒前
欢呼的丁真完成签到,获得积分10
20秒前
ty发布了新的文献求助10
20秒前
Faded完成签到 ,获得积分10
21秒前
ding应助Amorfati采纳,获得10
21秒前
好好学习天天向上完成签到,获得积分10
22秒前
所所应助lh采纳,获得10
23秒前
李爱国应助深情丸子采纳,获得10
23秒前
烟花应助阿湫采纳,获得10
23秒前
23秒前
乌梅不乌发布了新的文献求助10
24秒前
24秒前
YY完成签到,获得积分10
25秒前
26秒前
26秒前
Tiam发布了新的文献求助10
26秒前
种花家的狗狗完成签到,获得积分10
26秒前
wisdom完成签到,获得积分10
26秒前
123完成签到,获得积分10
27秒前
温暖芸完成签到,获得积分10
27秒前
28秒前
认真的觅松完成签到 ,获得积分10
29秒前
bkagyin应助12采纳,获得10
29秒前
gougoutu发布了新的文献求助10
29秒前
老菜鸟321发布了新的文献求助10
29秒前
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048