Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization

帕累托原理 最优化问题 帕累托最优 计算机科学 选择(遗传算法)
作者
Ivo Couckuyt,Dirk Deschrijver,Tom Dhaene
出处
期刊:Journal of Global Optimization [Springer Nature]
卷期号:60 (3): 575-594 被引量:173
标识
DOI:10.1007/s10898-013-0118-2
摘要

The use of surrogate based optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, “real-world” problems often consist of multiple, conflicting objectives leading to a set of competitive solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of weighting and aggregating the costs upfront). Most of the work in multiobjective optimization is focused on multiobjective evolutionary algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as multiobjective surrogate-based optimization, may prove to be even more worthwhile than SBO methods to expedite the optimization of computational expensive systems. In this paper, the authors propose the efficient multiobjective optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the probability of improvement and expected improvement criteria to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II, SPEA2 and SMS-EMOA multiobjective optimization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CNS完成签到,获得积分10
刚刚
都是发布了新的文献求助10
2秒前
orange9发布了新的文献求助10
2秒前
科研小白董完成签到 ,获得积分10
3秒前
可乐发布了新的文献求助10
3秒前
感性的凉面完成签到,获得积分20
4秒前
含糊的万宝路完成签到,获得积分10
5秒前
5秒前
5秒前
直率亦玉完成签到 ,获得积分10
5秒前
6秒前
安静的晓灵完成签到,获得积分10
6秒前
6秒前
浙江嘉兴完成签到,获得积分10
7秒前
自由的青亦应助可乐采纳,获得30
8秒前
深情安青应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
10秒前
大模型应助飘逸楷瑞采纳,获得10
11秒前
华仔应助小橘子采纳,获得10
11秒前
Akim应助纳斯达克采纳,获得10
11秒前
lgh发布了新的文献求助10
13秒前
13秒前
14秒前
努力哥发布了新的文献求助10
15秒前
可乐完成签到,获得积分10
15秒前
16秒前
17秒前
暴走完成签到 ,获得积分10
18秒前
小胡完成签到,获得积分10
18秒前
卷不动了发布了新的文献求助10
18秒前
19秒前
yiming完成签到,获得积分10
20秒前
22秒前
24秒前
小胡发布了新的文献求助10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123018
求助须知:如何正确求助?哪些是违规求助? 2773507
关于积分的说明 7718023
捐赠科研通 2429087
什么是DOI,文献DOI怎么找? 1290140
科研通“疑难数据库(出版商)”最低求助积分说明 621713
版权声明 600220