Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization

帕累托原理 最优化问题 帕累托最优 计算机科学 选择(遗传算法)
作者
Ivo Couckuyt,Dirk Deschrijver,Tom Dhaene
出处
期刊:Journal of Global Optimization [Springer Science+Business Media]
卷期号:60 (3): 575-594 被引量:173
标识
DOI:10.1007/s10898-013-0118-2
摘要

The use of surrogate based optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, “real-world” problems often consist of multiple, conflicting objectives leading to a set of competitive solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of weighting and aggregating the costs upfront). Most of the work in multiobjective optimization is focused on multiobjective evolutionary algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as multiobjective surrogate-based optimization, may prove to be even more worthwhile than SBO methods to expedite the optimization of computational expensive systems. In this paper, the authors propose the efficient multiobjective optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the probability of improvement and expected improvement criteria to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II, SPEA2 and SMS-EMOA multiobjective optimization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形静芙完成签到 ,获得积分10
刚刚
1秒前
林宥嘉发布了新的文献求助10
2秒前
吴南宛发布了新的文献求助10
4秒前
5秒前
有技术的完成签到,获得积分10
5秒前
5秒前
CodeCraft应助牛马采纳,获得10
7秒前
mzf发布了新的文献求助10
8秒前
9秒前
nhx完成签到,获得积分10
10秒前
共享精神应助lizibelle采纳,获得10
10秒前
杨建华发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
14秒前
墨辞完成签到 ,获得积分10
14秒前
14秒前
李健应助桃李采纳,获得10
18秒前
田様应助zhaxiao采纳,获得10
18秒前
汉堡包应助zhaxiao采纳,获得10
18秒前
何敏应助zhaxiao采纳,获得10
18秒前
大个应助zhaxiao采纳,获得10
18秒前
Xixi应助zhaxiao采纳,获得10
18秒前
科研通AI2S应助zhaxiao采纳,获得10
18秒前
李健应助zhaxiao采纳,获得10
18秒前
斯文败类应助zhaxiao采纳,获得10
19秒前
英俊的铭应助zhaxiao采纳,获得10
19秒前
科研通AI5应助zhaxiao采纳,获得10
19秒前
19秒前
19秒前
共享精神应助杨建华采纳,获得10
19秒前
zsl发布了新的文献求助30
22秒前
lizibelle完成签到,获得积分10
25秒前
minoricl完成签到,获得积分10
26秒前
27秒前
27秒前
28秒前
吴南宛完成签到,获得积分20
28秒前
星辰大海应助有技术的采纳,获得10
30秒前
hzz发布了新的文献求助10
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972387
求助须知:如何正确求助?哪些是违规求助? 3516862
关于积分的说明 11185001
捐赠科研通 3252334
什么是DOI,文献DOI怎么找? 1796376
邀请新用户注册赠送积分活动 876339
科研通“疑难数据库(出版商)”最低求助积分说明 805513