Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization

帕累托原理 最优化问题 帕累托最优 计算机科学 选择(遗传算法)
作者
Ivo Couckuyt,Dirk Deschrijver,Tom Dhaene
出处
期刊:Journal of Global Optimization [Springer Science+Business Media]
卷期号:60 (3): 575-594 被引量:173
标识
DOI:10.1007/s10898-013-0118-2
摘要

The use of surrogate based optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, “real-world” problems often consist of multiple, conflicting objectives leading to a set of competitive solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of weighting and aggregating the costs upfront). Most of the work in multiobjective optimization is focused on multiobjective evolutionary algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as multiobjective surrogate-based optimization, may prove to be even more worthwhile than SBO methods to expedite the optimization of computational expensive systems. In this paper, the authors propose the efficient multiobjective optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the probability of improvement and expected improvement criteria to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II, SPEA2 and SMS-EMOA multiobjective optimization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空溟fever完成签到,获得积分10
刚刚
刚刚
刚刚
领导范儿应助化学y采纳,获得10
1秒前
1秒前
1秒前
空溟fever发布了新的文献求助10
2秒前
ding应助杨诗梦采纳,获得10
3秒前
高高饼干发布了新的文献求助10
3秒前
realtimes完成签到,获得积分10
3秒前
4秒前
闪闪幼南完成签到,获得积分10
5秒前
桐桐应助朱凌霄采纳,获得10
5秒前
重要手机完成签到 ,获得积分10
5秒前
FXQ123_范发布了新的文献求助10
6秒前
7秒前
情怀应助hong采纳,获得10
7秒前
reny_o完成签到,获得积分10
7秒前
墨客发布了新的文献求助10
7秒前
木丁驳回了打打应助
8秒前
8秒前
研友_VZG7GZ应助111采纳,获得10
9秒前
9秒前
李明涛完成签到,获得积分10
10秒前
10秒前
liuf完成签到,获得积分20
10秒前
费凝海发布了新的文献求助10
11秒前
MXX完成签到 ,获得积分10
11秒前
852应助开心采纳,获得10
11秒前
ding应助12123ray采纳,获得10
11秒前
dong应助啊伟采纳,获得30
12秒前
彭于晏应助zn采纳,获得10
12秒前
lzy发布了新的文献求助10
13秒前
13秒前
twinkle发布了新的文献求助10
14秒前
N_N发布了新的文献求助10
14秒前
领导范儿应助YW采纳,获得10
17秒前
17秒前
bkagyin应助难过千易采纳,获得10
17秒前
火锅冒菜我的爱完成签到 ,获得积分10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298