Dehazing Using Color-Lines

计算机科学 人工智能 像素 计算机视觉 马尔可夫随机场 偏移量(计算机科学) 图像(数学) 彩色图像 RGB颜色模型 图像处理 图像分割 程序设计语言
作者
Raanan Fattal
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:34 (1): 1-14 被引量:1013
标识
DOI:10.1145/2651362
摘要

Photographs of hazy scenes typically suffer having low contrast and offer a limited visibility of the scene. This article describes a new method for single-image dehazing that relies on a generic regularity in natural images where pixels of small image patches typically exhibit a 1D distribution in RGB color space, known as color-lines. We derive a local formation model that explains the color-lines in the context of hazy scenes and use it for recovering the scene transmission based on the lines' offset from the origin. The lack of a dominant color-line inside a patch or its lack of consistency with the formation model allows us to identify and avoid false predictions. Thus, unlike existing approaches that follow their assumptions across the entire image, our algorithm validates its hypotheses and obtains more reliable estimates where possible. In addition, we describe a Markov random field model dedicated to producing complete and regularized transmission maps given noisy and scattered estimates. Unlike traditional field models that consist of local coupling, the new model is augmented with long-range connections between pixels of similar attributes. These connections allow our algorithm to properly resolve the transmission in isolated regions where nearby pixels do not offer relevant information. An extensive evaluation of our method over different types of images and its comparison to state-of-the-art methods over established benchmark images show a consistent improvement in the accuracy of the estimated scene transmission and recovered haze-free radiances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助苏哈托采纳,获得10
刚刚
刚刚
玖叁玖关注了科研通微信公众号
1秒前
陈一昂完成签到,获得积分20
1秒前
4秒前
怪杰完成签到,获得积分10
5秒前
谦让寻绿发布了新的文献求助10
5秒前
5秒前
6秒前
Aaron完成签到,获得积分10
6秒前
8秒前
充电宝应助zylyl采纳,获得10
8秒前
毕业不秃头完成签到,获得积分10
8秒前
wwk完成签到,获得积分20
9秒前
9秒前
10秒前
Ricky发布了新的文献求助10
10秒前
luuer发布了新的文献求助10
12秒前
hamigung发布了新的文献求助10
12秒前
852应助明天开始戒绿茶采纳,获得10
13秒前
完美世界应助wwk采纳,获得10
13秒前
domingo完成签到,获得积分10
14秒前
Soin完成签到,获得积分10
14秒前
吱哦周发布了新的文献求助10
14秒前
15秒前
情怀应助maymei采纳,获得10
16秒前
晚秋北斗完成签到 ,获得积分10
16秒前
16秒前
安稳毕业实验完成签到 ,获得积分10
18秒前
18秒前
ludwig发布了新的文献求助10
20秒前
冷酷的树叶完成签到 ,获得积分10
20秒前
20秒前
20秒前
21秒前
21秒前
23秒前
笑笑发布了新的文献求助30
24秒前
Tony完成签到,获得积分10
24秒前
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371