The analysis of survival (mortality) data: Fitting Gompertz, Weibull, and logistic functions

Gompertz函数 威布尔分布 生存分析 生存功能 逻辑函数 人口 统计 逻辑回归 生物 存活率 人口学 数学 医学 内科学 社会学
作者
David L. Wilson
出处
期刊:Mechanisms of Ageing and Development [Elsevier]
卷期号:74 (1-2): 15-33 被引量:148
标识
DOI:10.1016/0047-6374(94)90095-7
摘要

Survival functions are fitted to survival data from several large populations. The Gompertz survival function corresponds to exponential mortality rate increases with time. The Weibull survival function corresponds to mortality rates that increase as a power function of time. A two-parameter, logistic survival function is introduced, and corresponds to mortality rates that increase, and then decrease, with time. A three-parameter logistic-mortality function also is examined. It reflects mortality rates that rise, and then plateau, with age. Data are from published studies of medflies, Drosophila, house flies, flour beetles, and humans. Some survival data are better fit by a logistic survival function than by the more traditionally used Gompertz or Weibull functions. Gompertz, Weibull, or logistic survival functions often fit the survival of 95+% of a population, and the 'tails' of the survival curves usually appear to fall between the values predicted by the three functions. For some populations, such 'tails' appear to be too complex to be fit well by any simple function. Survival data for males and females in some populations are best fit by different functions. Populations of 100 or more are needed to distinguish among the functions. When testing effects of environmental or genetic manipulations on survival, it has been common to determine the changes in parameter values for a given function, such as Gompertz. It may be equally important to determine whether the best-fit function has changed as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大的老虎完成签到,获得积分10
1秒前
orixero应助科研通管家采纳,获得30
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
李健应助蓝歆采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
没有你不行完成签到,获得积分10
2秒前
HEIKU应助科研通管家采纳,获得20
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
23333完成签到,获得积分10
3秒前
3秒前
Alone离殇完成签到 ,获得积分10
4秒前
安东晨晨完成签到,获得积分10
4秒前
5秒前
WGOIST发布了新的文献求助10
5秒前
小h发布了新的文献求助10
5秒前
高高的冷之完成签到,获得积分10
6秒前
GT发布了新的文献求助10
6秒前
janejane发布了新的文献求助10
7秒前
有机发布了新的文献求助10
7秒前
8秒前
沉阁发布了新的文献求助10
9秒前
妙bu可yan完成签到,获得积分10
9秒前
tuo zhang完成签到,获得积分10
10秒前
个木发布了新的文献求助10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
探索化学的奥秘:电子结构方法 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788210
关于积分的说明 7784949
捐赠科研通 2444164
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625576
版权声明 601011