The analysis of survival (mortality) data: Fitting Gompertz, Weibull, and logistic functions

Gompertz函数 威布尔分布 生存分析 生存功能 逻辑函数 人口 统计 逻辑回归 生物 存活率 人口学 数学 医学 内科学 社会学
作者
David L. Wilson
出处
期刊:Mechanisms of Ageing and Development [Elsevier]
卷期号:74 (1-2): 15-33 被引量:148
标识
DOI:10.1016/0047-6374(94)90095-7
摘要

Survival functions are fitted to survival data from several large populations. The Gompertz survival function corresponds to exponential mortality rate increases with time. The Weibull survival function corresponds to mortality rates that increase as a power function of time. A two-parameter, logistic survival function is introduced, and corresponds to mortality rates that increase, and then decrease, with time. A three-parameter logistic-mortality function also is examined. It reflects mortality rates that rise, and then plateau, with age. Data are from published studies of medflies, Drosophila, house flies, flour beetles, and humans. Some survival data are better fit by a logistic survival function than by the more traditionally used Gompertz or Weibull functions. Gompertz, Weibull, or logistic survival functions often fit the survival of 95+% of a population, and the 'tails' of the survival curves usually appear to fall between the values predicted by the three functions. For some populations, such 'tails' appear to be too complex to be fit well by any simple function. Survival data for males and females in some populations are best fit by different functions. Populations of 100 or more are needed to distinguish among the functions. When testing effects of environmental or genetic manipulations on survival, it has been common to determine the changes in parameter values for a given function, such as Gompertz. It may be equally important to determine whether the best-fit function has changed as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ting完成签到,获得积分10
刚刚
微笑完成签到,获得积分10
刚刚
可爱的函函应助西宁阿采纳,获得30
1秒前
蓝莓松饼发布了新的文献求助10
1秒前
2秒前
哈哈发布了新的文献求助10
2秒前
高高发布了新的文献求助10
2秒前
一拳一个小欧阳完成签到 ,获得积分10
2秒前
明雨天地完成签到,获得积分10
2秒前
deathmask完成签到 ,获得积分10
2秒前
老实志泽完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
hata完成签到,获得积分10
3秒前
Pangsj完成签到,获得积分10
4秒前
4秒前
青蛙旅行完成签到 ,获得积分10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
5秒前
小马甲应助mimi采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
雪白问兰应助科研通管家采纳,获得30
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
zzzzzz应助科研通管家采纳,获得20
5秒前
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
sidegate应助科研通管家采纳,获得10
5秒前
prosperp应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
li完成签到,获得积分10
5秒前
5秒前
mlml完成签到,获得积分10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672