Modeling, Prediction, and in Vitro in Vivo Correlation of CYP3A4 Induction

CYP3A4型 体内 药理学 化学 埃法维伦兹 苯巴比妥 酶诱导剂 体外 药品 药代动力学 细胞色素P450 生物 生物化学 新陈代谢 免疫学 生物技术 病毒载量 抗逆转录病毒疗法 人类免疫缺陷病毒(HIV)
作者
Magang Shou,Mike Hayashi,Yvonne Pan,Yang Xu,Kari M. Morrissey,Lilly Xu,Gary L. Skiles
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology & Experimental Therapeutics]
卷期号:36 (11): 2355-2370 被引量:129
标识
DOI:10.1124/dmd.108.020602
摘要

CYP3A4 induction is not generally considered to be a concern for safety; however, serious therapeutic failures can occur with drugs whose exposure is lower as a result of more rapid metabolic clearance due to induction. Despite the potential therapeutic consequences of induction, little progress has been made in quantitative predictions of CYP3A4 induction-mediated drug-drug interactions (DDIs) from in vitro data. In the present study, predictive models have been developed to facilitate extrapolation of CYP3A4 induction measured in vitro to human clinical DDIs. The following parameters were incorporated into the DDI predictions: 1) EC50 and Emax of CYP3A4 induction in primary hepatocytes; 2) fractions unbound of the inducers in human plasma (fu, p) and hepatocytes (fu, hept); 3) relevant clinical in vivo concentrations of the inducers ([Ind]max, ss); and 4) fractions of the victim drugs cleared by CYP3A4 (fm, CYP3A4). The values for [Ind]max, ss and fm, CYP3A4 were obtained from clinical reports of CYP3A4 induction and inhibition, respectively. Exposure differences of the affected drugs in the presence and absence of the six individual inducers (bosentan, carbamazepine, dexamethasone, efavirenz, phenobarbital, and rifampicin) were predicted from the in vitro data and then correlated with those reported clinically (n = 103). The best correlation was observed (R2 = 0.624 and 0.578 from two hepatocyte donors) when fu, p and fu, hept were included in the predictions. Factors that could cause over- or underpredictions (potential outliers) of the DDIs were also analyzed. Collectively, these predictive models could add value to the assessment of risks associated with CYP3A4 induction-based DDIs by enabling their determination in the early stages of drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liuya完成签到,获得积分20
1秒前
XYP9X发布了新的文献求助10
1秒前
1秒前
把握有度完成签到,获得积分10
1秒前
1秒前
领导范儿应助直率谷蕊采纳,获得10
2秒前
2秒前
盷昀发布了新的文献求助10
2秒前
李娟发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
子暮发布了新的文献求助20
5秒前
科研通AI6应助风轩轩采纳,获得150
5秒前
5秒前
5秒前
科研通AI6应助chen采纳,获得10
5秒前
ww发布了新的文献求助10
6秒前
把握有度发布了新的文献求助10
7秒前
Irene完成签到,获得积分20
8秒前
子车茗应助汤圆采纳,获得10
8秒前
linjiebro完成签到,获得积分10
9秒前
Cc发布了新的文献求助10
9秒前
江生完成签到,获得积分10
10秒前
adi发布了新的文献求助10
10秒前
与非完成签到,获得积分10
10秒前
10秒前
猪猪hero应助bubble采纳,获得10
12秒前
12秒前
小小油应助arizaki7采纳,获得10
12秒前
小小油应助arizaki7采纳,获得10
12秒前
浪子应助arizaki7采纳,获得10
12秒前
stefan完成签到,获得积分10
13秒前
www完成签到,获得积分10
14秒前
14秒前
懒洋洋发布了新的文献求助20
14秒前
Akim应助绛橘色的日落采纳,获得10
14秒前
想美事发布了新的文献求助10
15秒前
科研通AI6应助张瑜采纳,获得10
15秒前
WZT完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836