弹性(材料科学)
互联网
渗透(认知心理学)
渗流理论
随机图
统计物理学
分数(化学)
复杂网络
幂律
连续介质渗流理论
理论(学习稳定性)
计算机科学
物理
组合数学
拓扑(电路)
数学
临界指数
理论计算机科学
凝聚态物理
相变
渗流临界指数
统计
热力学
生物
万维网
神经科学
图形
有机化学
化学
机器学习
作者
Reuven Cohen,Keren Erez,Daniel ben‐Avraham,Shlomo Havlin
标识
DOI:10.1103/physrevlett.85.4626
摘要
A common property of many large networks, including the Internet, is that the connectivity of the various nodes follows a scale-free power-law distribution, P(k) = ck(-alpha). We study the stability of such networks with respect to crashes, such as random removal of sites. Our approach, based on percolation theory, leads to a general condition for the critical fraction of nodes, p(c), that needs to be removed before the network disintegrates. We show analytically and numerically that for alpha=3 the transition never takes place, unless the network is finite. In the special case of the physical structure of the Internet (alpha approximately 2.5), we find that it is impressively robust, with p(c)>0.99.
科研通智能强力驱动
Strongly Powered by AbleSci AI