Investigation of a novel method for quality control of Chinese herbal compound prescription: HPLC fingerprint and multi-index components combining blending technology control for quality stability of Zhou's prescription extract

指纹(计算) 药方 主成分分析 色谱法 高效液相色谱法 质量(理念) 质量评定 计算机科学 数学 化学 人工智能 工程类 医学 评价方法 物理 可靠性工程 药理学 量子力学
作者
Zhong-Liang Tang,Yin Lian,Fang Wu,Xu Zhang
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:6 (12): 4158-4158 被引量:10
标识
DOI:10.1039/c3ay41884g
摘要

A novel method that combines high performance liquid chromatography (HPLC) fingerprint with blending technology was developed and validated for ensuring quality stability of Zhou's prescription extract. For fingerprint analysis, 32 peaks were selected as the common peaks by comparing the chromatograms of 15 batches of Zhou's prescription extracts. Meanwhile, these common peaks were identified by using electronic spray ion mass spectrometry. The batch, which contained herbs that were obtained from geo-authentic habitats during their best harvest times, was selected as the standard extract (SE). The quality difference between SE and 14 batches of Zhou's prescription extracts was evaluated by using the fingerprint similarity, relative deviation of content (RDC), hierarchical clustering analysis (HCA) and principal component analysis (PCA), and narrowed by applying blending technology that could lead to homogenization of high quality of the 14 batches of Zhou's prescription extracts by using nonlinear programming. According to the mode of finding difference and narrowing difference, the previous two kinds of quality control method was combined smartly to ensure the quality stability of Zhou's prescription. Finally, this method was verified and the results indicated that fingerprint similarities of 10 different blending schemes increased to the range of 0.9208 to 0.9797 from 0.7338 to 0.8925. The average RDCs of 28 index components decreased to the range of 0.1549 to 0.2790 from 0.4768 to 0.6083. The diagrams of HCA and PCA show that the 10 blending schemes were grouped with the standard Zhou's prescription extract. These results demonstrated that this new method is an efficient and reliable approach for ensuring quality stability of Zhou's prescription extract.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽老九完成签到,获得积分10
刚刚
Orange应助张鱼小丸子采纳,获得10
刚刚
1秒前
2秒前
雨夜星空完成签到,获得积分10
2秒前
饱满的半青完成签到 ,获得积分10
3秒前
3秒前
务实盼海发布了新的文献求助10
3秒前
Jouleken完成签到,获得积分10
3秒前
4秒前
zq00完成签到,获得积分10
4秒前
4秒前
斯文败类应助独木舟采纳,获得10
4秒前
易哒哒完成签到,获得积分10
4秒前
CCL应助QXS采纳,获得50
5秒前
大方安白完成签到,获得积分10
5秒前
Xxaaa完成签到,获得积分20
5秒前
张小敏完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
科研通AI2S应助Zhong采纳,获得10
7秒前
yidashi完成签到,获得积分10
7秒前
Kelvin.Tsi完成签到 ,获得积分10
7秒前
Island发布了新的文献求助10
8秒前
hu970发布了新的文献求助10
8秒前
九九发布了新的文献求助10
8秒前
123456完成签到,获得积分10
8秒前
BareBear应助龙妍琳采纳,获得10
8秒前
赘婿应助wary采纳,获得10
9秒前
小蘑菇应助wary采纳,获得10
9秒前
上官若男应助wary采纳,获得10
9秒前
李爱国应助木子采纳,获得10
9秒前
烟花应助马佳凯采纳,获得10
9秒前
9秒前
LYL完成签到,获得积分10
10秒前
10秒前
得意凡人完成签到,获得积分10
10秒前
10秒前
害怕的擎宇完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762