作者
Abdallah A. Ellabban,Akitaka Tsujikawa,Sotaro Ooto,Kenji Yamashiro,Tatsuro Ishibashi,Isao Nakata,Masahiro Miyake,Yumiko Akagi-Kurashige,Naoko Ueda‐Arakawa,Ayako Shigeta,Shin Yoshitake,Ayako Takahashi,Nagahisa Yoshimura
摘要
Purpose To study the prevalence and 3-dimensional (3-D) tomographic features of focal choroidal excavations in eyes with central serous chorioretinopathy (CSC) using swept-source optical coherence tomography (OCT). Design Prospective, cross-sectional study. Methods We examined 116 consecutive eyes with CSC with a prototype 3-D swept-source OCT. 3-D images of the shape of the macular area, covering 6 × 6 mm2, were reconstructed by segmentation of the outer surface of the retinal pigment epithelium (RPE). Results The 3-D swept-source OCT detected focal choroidal excavations in 9 eyes (7.8%). The 3-D scanning protocol, coupled with en face scans, allowed for clear visualization of the excavation morphology. In 5 eyes with focal excavations, unusual choroidal tissue was found beneath the excavation, bridging the bottom of the excavation and the outer choroidal boundary. Additionally, 3 of those 5 eyes showed a suprachoroidal space below the excavation, as if the outer choroidal boundary is pulled inward by this bridging tissue. The focal choroidal excavations were located within fluorescein leakage points and areas of choroidal hyperpermeability. Eyes with focal choroidal excavations were more myopic (−4.42 ± 2.92 diopters) than eyes without excavations (−0.27 ± 1.80 diopters, P = .001). Subfoveal choroidal thickness was significantly thinner (301.3 ± 60.1 μm) in eyes with focal excavations than in eyes without the excavations (376.6 ± 104.8 μm, P = .036). Conclusions Focal choroidal excavations were present in 7.8% of eyes with CSC. In these eyes, focal choroidal excavations may have formed from RPE retraction caused by focal scarring of choroidal connective tissue. To study the prevalence and 3-dimensional (3-D) tomographic features of focal choroidal excavations in eyes with central serous chorioretinopathy (CSC) using swept-source optical coherence tomography (OCT). Prospective, cross-sectional study. We examined 116 consecutive eyes with CSC with a prototype 3-D swept-source OCT. 3-D images of the shape of the macular area, covering 6 × 6 mm2, were reconstructed by segmentation of the outer surface of the retinal pigment epithelium (RPE). The 3-D swept-source OCT detected focal choroidal excavations in 9 eyes (7.8%). The 3-D scanning protocol, coupled with en face scans, allowed for clear visualization of the excavation morphology. In 5 eyes with focal excavations, unusual choroidal tissue was found beneath the excavation, bridging the bottom of the excavation and the outer choroidal boundary. Additionally, 3 of those 5 eyes showed a suprachoroidal space below the excavation, as if the outer choroidal boundary is pulled inward by this bridging tissue. The focal choroidal excavations were located within fluorescein leakage points and areas of choroidal hyperpermeability. Eyes with focal choroidal excavations were more myopic (−4.42 ± 2.92 diopters) than eyes without excavations (−0.27 ± 1.80 diopters, P = .001). Subfoveal choroidal thickness was significantly thinner (301.3 ± 60.1 μm) in eyes with focal excavations than in eyes without the excavations (376.6 ± 104.8 μm, P = .036). Focal choroidal excavations were present in 7.8% of eyes with CSC. In these eyes, focal choroidal excavations may have formed from RPE retraction caused by focal scarring of choroidal connective tissue.