Physiologically Based Pharmacokinetic Modeling to Predict Drug-Drug Interactions Involving Inhibitory Metabolite: A Case Study of Amiodarone

基于生理学的药代动力学模型 药理学 代谢物 药代动力学 胺碘酮 CYP2D6型 右美沙芬 活性代谢物 CYP2C9 化学 CYP3A4型 药物相互作用 细胞色素P450 药品 CYP3A型 医学 新陈代谢 生物化学 内科学 心房颤动
作者
Yuan Chen,Jialin Mao,Cornelis E. C. A. Hop
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology & Experimental Therapeutics]
卷期号:43 (2): 182-189 被引量:43
标识
DOI:10.1124/dmd.114.059311
摘要

Evaluation of drug-drug interaction (DDI) involving circulating inhibitory metabolites of perpetrator drugs has recently drawn more attention from regulatory agencies and pharmaceutical companies. Here, using amiodarone (AMIO) as an example, we demonstrate the use of physiologically based pharmacokinetic (PBPK) modeling to assess how a potential inhibitory metabolite can contribute to clinically significant DDIs. Amiodarone was reported to increase the exposure of simvastatin, dextromethorphan, and warfarin by 1.2- to 2-fold, which was not expected based on its weak inhibition observed in vitro. The major circulating metabolite, mono-desethyl-amiodarone (MDEA), was later identified to have a more potent inhibitory effect. Using a combined “bottom-up” and “top-down” approach, a PBPK model was built to successfully simulate the pharmacokinetic profile of AMIO and MDEA, particularly their accumulation in plasma and liver after a long-term treatment. The clinical AMIO DDIs were predicted using the verified PBPK model with incorporation of cytochrome P450 inhibition from both AMIO and MDEA. The closest prediction was obtained for CYP3A (simvastatin) DDI when the competitive inhibition from both AMIO and MDEA was considered, for CYP2D6 (dextromethorphan) DDI when the competitive inhibition from AMIO and the competitive plus time-dependent inhibition from MDEA were incorporated, and for CYP2C9 (warfarin) DDI when the competitive plus time-dependent inhibition from AMIO and the competitive inhibition from MDEA were considered. The PBPK model with the ability to simulate DDI by considering dynamic change and accumulation of inhibitor (parent and metabolite) concentration in plasma and liver provides advantages in understanding the possible mechanism of clinical DDIs involving inhibitory metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈二萌完成签到,获得积分10
刚刚
zoe发布了新的文献求助10
刚刚
1秒前
石页发布了新的文献求助10
1秒前
猫丫应助lrl采纳,获得10
1秒前
李爱国应助雨晴采纳,获得30
1秒前
2秒前
可爱的函函应助Aprilapple采纳,获得10
2秒前
阔达岂愈完成签到,获得积分20
2秒前
云瑾应助科研通管家采纳,获得50
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
Lucky完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
jing111发布了新的文献求助10
3秒前
大个应助科研通管家采纳,获得10
3秒前
不配.应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
领导范儿应助biolbc采纳,获得10
3秒前
3秒前
熊熊发布了新的文献求助30
4秒前
4秒前
万能图书馆应助yj采纳,获得10
5秒前
今后应助朴素篮球采纳,获得20
5秒前
tudou完成签到,获得积分10
7秒前
低调000完成签到,获得积分10
8秒前
饱满凝冬关注了科研通微信公众号
9秒前
星辰大海应助kirirto采纳,获得10
9秒前
bkagyin应助tigger采纳,获得10
9秒前
9秒前
锦鲤完成签到 ,获得积分10
10秒前
清风在侧发布了新的文献求助10
10秒前
10秒前
清脆无颜发布了新的文献求助10
11秒前
Akim应助无心的秋玲采纳,获得10
11秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143963
求助须知:如何正确求助?哪些是违规求助? 2795613
关于积分的说明 7815684
捐赠科研通 2451611
什么是DOI,文献DOI怎么找? 1304572
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419