Physiologically Based Pharmacokinetic Modeling to Predict Drug-Drug Interactions Involving Inhibitory Metabolite: A Case Study of Amiodarone

基于生理学的药代动力学模型 药理学 代谢物 药代动力学 胺碘酮 CYP2D6型 右美沙芬 活性代谢物 CYP2C9 化学 CYP3A4型 药物相互作用 细胞色素P450 药品 CYP3A型 医学 新陈代谢 生物化学 内科学 心房颤动
作者
Yuan Chen,Jialin Mao,Cornelis E. C. A. Hop
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology & Experimental Therapeutics]
卷期号:43 (2): 182-189 被引量:43
标识
DOI:10.1124/dmd.114.059311
摘要

Evaluation of drug-drug interaction (DDI) involving circulating inhibitory metabolites of perpetrator drugs has recently drawn more attention from regulatory agencies and pharmaceutical companies. Here, using amiodarone (AMIO) as an example, we demonstrate the use of physiologically based pharmacokinetic (PBPK) modeling to assess how a potential inhibitory metabolite can contribute to clinically significant DDIs. Amiodarone was reported to increase the exposure of simvastatin, dextromethorphan, and warfarin by 1.2- to 2-fold, which was not expected based on its weak inhibition observed in vitro. The major circulating metabolite, mono-desethyl-amiodarone (MDEA), was later identified to have a more potent inhibitory effect. Using a combined “bottom-up” and “top-down” approach, a PBPK model was built to successfully simulate the pharmacokinetic profile of AMIO and MDEA, particularly their accumulation in plasma and liver after a long-term treatment. The clinical AMIO DDIs were predicted using the verified PBPK model with incorporation of cytochrome P450 inhibition from both AMIO and MDEA. The closest prediction was obtained for CYP3A (simvastatin) DDI when the competitive inhibition from both AMIO and MDEA was considered, for CYP2D6 (dextromethorphan) DDI when the competitive inhibition from AMIO and the competitive plus time-dependent inhibition from MDEA were incorporated, and for CYP2C9 (warfarin) DDI when the competitive plus time-dependent inhibition from AMIO and the competitive inhibition from MDEA were considered. The PBPK model with the ability to simulate DDI by considering dynamic change and accumulation of inhibitor (parent and metabolite) concentration in plasma and liver provides advantages in understanding the possible mechanism of clinical DDIs involving inhibitory metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千早爱音完成签到 ,获得积分10
刚刚
ca0ca0完成签到,获得积分10
1秒前
aldehyde应助王燕峰采纳,获得10
4秒前
6秒前
山水之乐发布了新的文献求助10
6秒前
7秒前
迷途完成签到,获得积分10
7秒前
朝圣者发布了新的文献求助10
7秒前
8秒前
9秒前
善学以致用应助李串串采纳,获得10
9秒前
王燕峰完成签到,获得积分20
10秒前
zdxs完成签到,获得积分10
10秒前
Rr完成签到,获得积分10
10秒前
11秒前
迷途发布了新的文献求助10
11秒前
Jiye完成签到 ,获得积分10
12秒前
七七发布了新的文献求助10
12秒前
KM完成签到,获得积分10
12秒前
Pam发布了新的文献求助10
13秒前
goldenfleece完成签到,获得积分10
13秒前
杨迪祥完成签到 ,获得积分10
14秒前
14秒前
14秒前
15秒前
好好好发布了新的文献求助10
15秒前
无花果应助朝圣者采纳,获得10
16秒前
打打应助glimmer采纳,获得10
17秒前
丘比特应助gyr采纳,获得10
17秒前
田様应助小颜儿采纳,获得10
18秒前
18秒前
wanan发布了新的文献求助10
19秒前
一个大花瓶完成签到 ,获得积分10
20秒前
hui完成签到,获得积分10
20秒前
leilei发布了新的文献求助10
20秒前
虚拟的颦完成签到 ,获得积分20
21秒前
知性的千秋完成签到,获得积分10
21秒前
果冻完成签到 ,获得积分10
22秒前
吴吴发布了新的文献求助10
22秒前
zhaosiqi完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080