Physiologically Based Pharmacokinetic Modeling to Predict Drug-Drug Interactions Involving Inhibitory Metabolite: A Case Study of Amiodarone

基于生理学的药代动力学模型 药理学 代谢物 药代动力学 胺碘酮 CYP2D6型 右美沙芬 活性代谢物 CYP2C9 化学 CYP3A4型 药物相互作用 细胞色素P450 药品 CYP3A型 医学 新陈代谢 生物化学 内科学 心房颤动
作者
Yuan Chen,Jialin Mao,Cornelis E. C. A. Hop
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology & Experimental Therapeutics]
卷期号:43 (2): 182-189 被引量:43
标识
DOI:10.1124/dmd.114.059311
摘要

Evaluation of drug-drug interaction (DDI) involving circulating inhibitory metabolites of perpetrator drugs has recently drawn more attention from regulatory agencies and pharmaceutical companies. Here, using amiodarone (AMIO) as an example, we demonstrate the use of physiologically based pharmacokinetic (PBPK) modeling to assess how a potential inhibitory metabolite can contribute to clinically significant DDIs. Amiodarone was reported to increase the exposure of simvastatin, dextromethorphan, and warfarin by 1.2- to 2-fold, which was not expected based on its weak inhibition observed in vitro. The major circulating metabolite, mono-desethyl-amiodarone (MDEA), was later identified to have a more potent inhibitory effect. Using a combined “bottom-up” and “top-down” approach, a PBPK model was built to successfully simulate the pharmacokinetic profile of AMIO and MDEA, particularly their accumulation in plasma and liver after a long-term treatment. The clinical AMIO DDIs were predicted using the verified PBPK model with incorporation of cytochrome P450 inhibition from both AMIO and MDEA. The closest prediction was obtained for CYP3A (simvastatin) DDI when the competitive inhibition from both AMIO and MDEA was considered, for CYP2D6 (dextromethorphan) DDI when the competitive inhibition from AMIO and the competitive plus time-dependent inhibition from MDEA were incorporated, and for CYP2C9 (warfarin) DDI when the competitive plus time-dependent inhibition from AMIO and the competitive inhibition from MDEA were considered. The PBPK model with the ability to simulate DDI by considering dynamic change and accumulation of inhibitor (parent and metabolite) concentration in plasma and liver provides advantages in understanding the possible mechanism of clinical DDIs involving inhibitory metabolites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助zhuangchen采纳,获得10
1秒前
ivy发布了新的文献求助10
1秒前
充电宝应助tcmj采纳,获得10
1秒前
Owen应助冲浪男孩226采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
执着乐双发布了新的文献求助10
4秒前
4秒前
4秒前
星落枝头发布了新的文献求助10
5秒前
大方绿蕊发布了新的文献求助10
5秒前
执念发布了新的文献求助10
5秒前
大个应助RK_404采纳,获得10
6秒前
6秒前
科研通AI2S应助罗媛采纳,获得10
7秒前
柠栀发布了新的文献求助10
8秒前
8秒前
tcmj发布了新的文献求助10
9秒前
w1b发布了新的文献求助10
10秒前
小马甲应助Oliver采纳,获得10
11秒前
田様应助大方绿蕊采纳,获得10
11秒前
李健的粉丝团团长应助000采纳,获得10
11秒前
ree发布了新的文献求助20
11秒前
量子星尘发布了新的文献求助10
13秒前
ZXD1989完成签到 ,获得积分10
13秒前
samifranco发布了新的文献求助10
13秒前
zz完成签到,获得积分10
15秒前
llll完成签到 ,获得积分0
15秒前
15秒前
16秒前
16秒前
小T儿发布了新的文献求助10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
cjl应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685