蒸发
蒸发冷却器
潜热
冷凝
热力学
化学
热假人
水分
下降(电信)
机械
图层(电子)
材料科学
保温
物理
电信
有机化学
计算机科学
作者
George Havenith,Peter Bröde,Emiel den Hartog,Kalev Kuklane,Ingvar Holmér,René M. Rossi,Mark Richards,B. Farnworth,Xiaoxin Wang
标识
DOI:10.1152/japplphysiol.01271.2012
摘要
Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has found little use in recent literature. In this experiment a thermal manikin, (MTNW, Seattle, WA) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently, allowing a direct calculation of an effective latent heat of evaporation (λeff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used, and different numbers of layers were used. Tests took place in 20°C, 0.5 m/s at different humidities and were performed both dry and with a wet layer, allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin, λeff is close to the theoretical value (2,430 J/g) but starts to drop when more clothing is worn, e.g., by 11% for underwear and permeable coverall. When evaporation is from the underwear, λeff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base layer), increasing toward 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear, the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of λeff was developed.
科研通智能强力驱动
Strongly Powered by AbleSci AI