数学
间断伽辽金法
超收敛
守恒定律
离散化
有限元法
应用数学
分段
耗散系统
基函数
投影(关系代数)
伽辽金法
数学分析
算法
热力学
量子力学
物理
作者
Rupak Biswas,Karen Dragon Devine,Joseph E. Flaherty
标识
DOI:10.1016/0168-9274(94)90029-9
摘要
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial are obtained by a p-refinement technique using superconvergence at Radau points. The resulting methods is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational costof the method.
科研通智能强力驱动
Strongly Powered by AbleSci AI