Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring

计算机科学 响应时间 协议(科学) 实时计算 信号(编程语言) 采样(信号处理) 鉴定(生物学) 传感器阵列 混合氧化物燃料 生物系统 材料科学 探测器 机器学习 电信 生物 计算机图形学(图像) 医学 病理 冶金 程序设计语言 替代医学 植物
作者
Jordi Fonollosa,Sadique Sheik,Ramón Huerta,Santiago Marco
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:215: 618-629 被引量:204
标识
DOI:10.1016/j.snb.2015.03.028
摘要

Metal oxide (MOX) gas sensors arrays are a predominant technological choice to perform fundamental tasks of chemical detection. Yet, their use has been mainly limited to relatively controlled instrument configurations where the sensor array is placed within a closed measurement chamber. Usually, the experimental protocol is defined beforehand and it includes three stages: the array is first exposed to a gas reference, then to the gas sample, and finally to the reference again to recover the initial state. Such sampling procedure requires signal acquisition during the complete experimental protocol and usually delays the output prediction until the predefined measurement duration is complete. Due to the slow time response of chemical sensors, the completion of the measurement typically requires minutes. In this paper we propose the use of reservoir computing (RC) algorithms to overcome the slow temporal dynamics of chemical sensor arrays, allowing identification and quantification of chemicals of interest continuously and reducing measurement delays. We generated two datasets to test the ability of RC algorithms to provide accurate and continuous prediction to fast varying gas concentrations in real time. Both datasets – one generated with synthetic data and the other acquired from actual gas sensors – provide time series of MOX sensors exposed to binary gas mixtures where concentration levels change randomly over time. Our results show that our approach improves the time response of the sensory system and provides accurate predictions in real time, making the system specifically suitable for online monitoring applications. Finally, the collected dataset and developed code are made publicly available to the research community for further studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃饭睡觉样样精通完成签到,获得积分10
2秒前
深情未来发布了新的文献求助10
4秒前
张宝发布了新的文献求助10
4秒前
4秒前
5秒前
刘一一完成签到,获得积分10
8秒前
8秒前
byp发布了新的文献求助10
9秒前
鱼鱼鱼KYSL完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
完美世界应助Jenkin采纳,获得10
12秒前
13秒前
清水发布了新的文献求助10
16秒前
科研通AI2S应助dll采纳,获得10
18秒前
LLL发布了新的文献求助10
19秒前
月行天完成签到,获得积分10
21秒前
23秒前
智青完成签到,获得积分10
24秒前
不安青牛应助LLL采纳,获得10
25秒前
在水一方应助LLL采纳,获得10
25秒前
丑丑阿发布了新的文献求助10
25秒前
25秒前
科研通AI2S应助小李爱科研采纳,获得10
26秒前
荼蘼发布了新的文献求助10
27秒前
迷人素发布了新的文献求助10
29秒前
郭鹏完成签到,获得积分10
30秒前
32秒前
iNk应助dll采纳,获得10
32秒前
迷人素完成签到,获得积分10
34秒前
37秒前
37秒前
38秒前
张宝发布了新的文献求助10
39秒前
JamesPei应助爱学习的源儿采纳,获得10
41秒前
追寻半仙完成签到,获得积分10
41秒前
haha完成签到,获得积分20
41秒前
小萝莉发布了新的文献求助10
42秒前
Joel发布了新的文献求助10
43秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161611
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897655
捐赠科研通 2471797
什么是DOI,文献DOI怎么找? 1316160
科研通“疑难数据库(出版商)”最低求助积分说明 631222
版权声明 602112