Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring

计算机科学 响应时间 协议(科学) 实时计算 信号(编程语言) 采样(信号处理) 鉴定(生物学) 传感器阵列 混合氧化物燃料 生物系统 材料科学 探测器 机器学习 电信 生物 计算机图形学(图像) 医学 病理 冶金 程序设计语言 替代医学 植物
作者
Jordi Fonollosa,Sadique Sheik,Ramón Huerta,Santiago Marco
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:215: 618-629 被引量:214
标识
DOI:10.1016/j.snb.2015.03.028
摘要

Metal oxide (MOX) gas sensors arrays are a predominant technological choice to perform fundamental tasks of chemical detection. Yet, their use has been mainly limited to relatively controlled instrument configurations where the sensor array is placed within a closed measurement chamber. Usually, the experimental protocol is defined beforehand and it includes three stages: the array is first exposed to a gas reference, then to the gas sample, and finally to the reference again to recover the initial state. Such sampling procedure requires signal acquisition during the complete experimental protocol and usually delays the output prediction until the predefined measurement duration is complete. Due to the slow time response of chemical sensors, the completion of the measurement typically requires minutes. In this paper we propose the use of reservoir computing (RC) algorithms to overcome the slow temporal dynamics of chemical sensor arrays, allowing identification and quantification of chemicals of interest continuously and reducing measurement delays. We generated two datasets to test the ability of RC algorithms to provide accurate and continuous prediction to fast varying gas concentrations in real time. Both datasets – one generated with synthetic data and the other acquired from actual gas sensors – provide time series of MOX sensors exposed to binary gas mixtures where concentration levels change randomly over time. Our results show that our approach improves the time response of the sensory system and provides accurate predictions in real time, making the system specifically suitable for online monitoring applications. Finally, the collected dataset and developed code are made publicly available to the research community for further studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大知闲闲完成签到 ,获得积分10
刚刚
开心的云完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助30
2秒前
打打应助我有一只猫采纳,获得10
2秒前
周常通完成签到,获得积分10
3秒前
朔方姑娘吧完成签到 ,获得积分10
10秒前
11秒前
天道酬勤完成签到,获得积分10
12秒前
13秒前
leena完成签到 ,获得积分10
18秒前
煲煲煲仔饭完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
zhang完成签到 ,获得积分10
21秒前
onevip完成签到,获得积分0
21秒前
dolabmu完成签到 ,获得积分10
22秒前
laber应助科研通管家采纳,获得50
25秒前
laber应助科研通管家采纳,获得50
25秒前
风清扬应助科研通管家采纳,获得150
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
和平使命应助科研通管家采纳,获得10
25秒前
laber应助科研通管家采纳,获得50
25秒前
Akim应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
康谨完成签到 ,获得积分10
26秒前
Kiki完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
32秒前
猴王完成签到,获得积分10
35秒前
小海棉完成签到,获得积分10
35秒前
奥丁不言语完成签到 ,获得积分10
35秒前
桃花源的瓶起子完成签到 ,获得积分10
36秒前
河鲸完成签到 ,获得积分10
39秒前
善善完成签到 ,获得积分10
40秒前
快乐小菜瓜完成签到 ,获得积分10
42秒前
儒雅沛凝完成签到 ,获得积分10
42秒前
ESC惠子子子子子完成签到 ,获得积分10
44秒前
vv完成签到,获得积分10
45秒前
45秒前
sll完成签到 ,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093056
求助须知:如何正确求助?哪些是违规求助? 4306804
关于积分的说明 13417225
捐赠科研通 4132917
什么是DOI,文献DOI怎么找? 2264214
邀请新用户注册赠送积分活动 1267918
关于科研通互助平台的介绍 1203651