Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS

归一化差异植被指数 物候学 常绿 增强植被指数 中分辨率成像光谱仪 环境科学 生长季节 植被(病理学) 每年落叶的 生态系统 天蓬 自然地理学 叶面积指数 生态学 地理 植被指数 生物 工程类 病理 航空航天工程 医学 卫星
作者
Chaoyang Wu,Alemu Gonsamo,Christopher M. Gough,Jing M. Chen,Shiguang Xu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:147: 79-88 被引量:131
标识
DOI:10.1016/j.rse.2014.03.001
摘要

The phenology of vegetation exerts an important control over the terrestrial ecosystem carbon (C) cycle. Remote sensing of key phenological phases in forests (e.g., the spring onset and autumn end of growing season) remains challenging due to noise in time series and the limited seasonal variation of canopy greenness in evergreen forests. Using 94 site-years of C flux data from four deciduous broadleaf forests (DBF) and six evergreen needleleaf forests (ENF) in North America, we examine whether growing season phenology can be remotely sensed from mean vegetation indices (VIs) derived from spring (Apr.–May) and autumn (Sep.–Nov) observations. Five VIs were used based on Moderate Resolution Imaging Spectroradiometer (MODIS) data, including the normalized difference vegetation index (NDVI), the land surface water index (LSWI), the enhanced vegetation index (EVI), the wide dynamic range vegetation index (WDRVI) and the optimized soil-adjusted vegetation index (OSAVI). Our results show that growing season transitions can be inferred from mean seasonal VIs, though the different VIs varied in their predictive strength across sites and plant functional types. Widely used NDVI and EVI exhibited limited potential in tracking growing season phenology of ENF ecosystems, while indices sensitive to water (i.e., LSWI) or less influenced by soil (i.e., OSAVI) may have unrevealed powers in indicating phenological transitions. OSAVI was shown to be a strong predictor of the end of the growing season in ENF ecosystems, suggesting that this VI may offer a new strategy for modeling the phenology of ENF sites. We conclude that combinations of multiple indices may improve the remote sensing of land surface phenology, as evidenced by the good agreement between modeled and observed growing season transitions and its length in our evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Msure完成签到,获得积分20
刚刚
共享精神应助欣慰的天荷采纳,获得10
刚刚
朴实冰姬发布了新的文献求助10
刚刚
刚刚
早日毕业发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
科研通AI5应助新之助采纳,获得30
2秒前
2秒前
Navial30发布了新的文献求助20
3秒前
4秒前
杳鸢应助火山蜗牛采纳,获得10
4秒前
科研小民工应助1234采纳,获得30
4秒前
feng发布了新的文献求助10
5秒前
聪慧乐儿完成签到 ,获得积分20
5秒前
夏天来了发布了新的文献求助50
5秒前
Gigi发布了新的文献求助10
6秒前
偶Henry发布了新的文献求助10
6秒前
隐形曼青应助0h采纳,获得10
6秒前
善学以致用应助Pendragon采纳,获得10
7秒前
www完成签到,获得积分10
9秒前
111发布了新的文献求助10
9秒前
9秒前
yz完成签到 ,获得积分10
10秒前
科研通AI5应助鱼儿采纳,获得30
10秒前
Lucas应助Msure采纳,获得10
10秒前
英俊的铭应助幸运之裤1111采纳,获得10
11秒前
实验好难应助Gigi采纳,获得10
13秒前
WFLLL发布了新的文献求助10
14秒前
体贴凌柏应助笨笨煎饼采纳,获得10
17秒前
钱多多完成签到,获得积分10
17秒前
ZZzz完成签到 ,获得积分10
19秒前
细腻飞鸟完成签到,获得积分10
21秒前
寒子川完成签到,获得积分20
21秒前
21秒前
田様应助junjun采纳,获得10
21秒前
21秒前
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligomycin, a new antifungal antibiotic 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3583624
求助须知:如何正确求助?哪些是违规求助? 3152835
关于积分的说明 9494347
捐赠科研通 2855426
什么是DOI,文献DOI怎么找? 1569545
邀请新用户注册赠送积分活动 735372
科研通“疑难数据库(出版商)”最低求助积分说明 721212