Text mining techniques for patent analysis

计算机科学 术语 专利可视化 过程(计算) 集合(抽象数据类型) 鉴定(生物学) 情报检索 数据挖掘 领域(数学分析) 关联规则学习 分割 信息抽取 人工智能 数据科学 哲学 数学分析 操作系统 生物 植物 程序设计语言 语言学 数学
作者
Yuen‐Hsien Tseng,Chi-Jen Lin,Yu-I Lin
出处
期刊:Information Processing and Management [Elsevier]
卷期号:43 (5): 1216-1247 被引量:664
标识
DOI:10.1016/j.ipm.2006.11.011
摘要

Patent documents contain important research results. However, they are lengthy and rich in technical terminology such that it takes a lot of human efforts for analyses. Automatic tools for assisting patent engineers or decision makers in patent analysis are in great demand. This paper describes a series of text mining techniques that conforms to the analytical process used by patent analysts. These techniques include text segmentation, summary extraction, feature selection, term association, cluster generation, topic identification, and information mapping. The issues of efficiency and effectiveness are considered in the design of these techniques. Some important features of the proposed methodology include a rigorous approach to verify the usefulness of segment extracts as the document surrogates, a corpus- and dictionary-free algorithm for keyphrase extraction, an efficient co-word analysis method that can be applied to large volume of patents, and an automatic procedure to create generic cluster titles for ease of result interpretation. Evaluation of these techniques was conducted. The results confirm that the machine-generated summaries do preserve more important content words than some other sections for classification. To demonstrate the feasibility, the proposed methodology was applied to a real-world patent set for domain analysis and mapping, which shows that our approach is more effective than existing classification systems. The attempt in this paper to automate the whole process not only helps create final patent maps for topic analyses, but also facilitates or improves other patent analysis tasks such as patent classification, organization, knowledge sharing, and prior art searches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助李_Steven采纳,获得10
1秒前
科研通AI6应助李_Steven采纳,获得10
1秒前
科研通AI6应助李_Steven采纳,获得10
1秒前
科研通AI6应助李_Steven采纳,获得10
1秒前
科研通AI6应助李_Steven采纳,获得10
1秒前
科研通AI6应助李_Steven采纳,获得10
1秒前
饭团的老父亲应助李_Steven采纳,获得10
1秒前
饭团的老父亲应助李_Steven采纳,获得10
1秒前
饭团的老父亲应助李_Steven采纳,获得10
1秒前
Shawn完成签到,获得积分10
1秒前
饭团的老父亲应助李_Steven采纳,获得10
1秒前
1秒前
大模型应助周美言采纳,获得10
2秒前
王超发布了新的文献求助10
2秒前
3秒前
agony完成签到 ,获得积分10
3秒前
天天破大防完成签到,获得积分10
3秒前
宫宛儿发布了新的文献求助10
4秒前
0514gr完成签到,获得积分10
4秒前
斯文败类应助圥忈采纳,获得10
4秒前
完美世界应助龙凌音采纳,获得10
6秒前
chc发布了新的文献求助10
6秒前
6秒前
李爱国应助BioGO采纳,获得10
7秒前
含蓄的小熊猫完成签到 ,获得积分10
7秒前
科研通AI6应助李_Steven采纳,获得10
8秒前
科研通AI6应助李_Steven采纳,获得10
8秒前
科研通AI6应助李_Steven采纳,获得30
8秒前
GAPING发布了新的文献求助10
8秒前
科研通AI6应助李_Steven采纳,获得10
8秒前
科研通AI6应助李_Steven采纳,获得10
8秒前
科研通AI6应助李_Steven采纳,获得10
8秒前
科研通AI6应助李_Steven采纳,获得10
8秒前
科研通AI6应助李_Steven采纳,获得10
8秒前
科研通AI6应助李_Steven采纳,获得10
8秒前
8秒前
酷波er应助激昂的蜻蜓采纳,获得10
9秒前
顾矜应助王超采纳,获得10
9秒前
小鱼干完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655717
求助须知:如何正确求助?哪些是违规求助? 4800177
关于积分的说明 15073698
捐赠科研通 4814168
什么是DOI,文献DOI怎么找? 2575555
邀请新用户注册赠送积分活动 1530927
关于科研通互助平台的介绍 1489596