Text mining techniques for patent analysis

计算机科学 术语 专利可视化 过程(计算) 集合(抽象数据类型) 鉴定(生物学) 情报检索 数据挖掘 领域(数学分析) 关联规则学习 分割 信息抽取 人工智能 数据科学 数学分析 哲学 语言学 植物 数学 生物 程序设计语言 操作系统
作者
Yuen‐Hsien Tseng,Chi-Jen Lin,Yu-I Lin
出处
期刊:Information Processing and Management [Elsevier]
卷期号:43 (5): 1216-1247 被引量:664
标识
DOI:10.1016/j.ipm.2006.11.011
摘要

Patent documents contain important research results. However, they are lengthy and rich in technical terminology such that it takes a lot of human efforts for analyses. Automatic tools for assisting patent engineers or decision makers in patent analysis are in great demand. This paper describes a series of text mining techniques that conforms to the analytical process used by patent analysts. These techniques include text segmentation, summary extraction, feature selection, term association, cluster generation, topic identification, and information mapping. The issues of efficiency and effectiveness are considered in the design of these techniques. Some important features of the proposed methodology include a rigorous approach to verify the usefulness of segment extracts as the document surrogates, a corpus- and dictionary-free algorithm for keyphrase extraction, an efficient co-word analysis method that can be applied to large volume of patents, and an automatic procedure to create generic cluster titles for ease of result interpretation. Evaluation of these techniques was conducted. The results confirm that the machine-generated summaries do preserve more important content words than some other sections for classification. To demonstrate the feasibility, the proposed methodology was applied to a real-world patent set for domain analysis and mapping, which shows that our approach is more effective than existing classification systems. The attempt in this paper to automate the whole process not only helps create final patent maps for topic analyses, but also facilitates or improves other patent analysis tasks such as patent classification, organization, knowledge sharing, and prior art searches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻的大白完成签到,获得积分10
1秒前
Nitric_Oxide应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
sherrycofe应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
2秒前
Nitric_Oxide应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
赵聚星完成签到,获得积分10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
3秒前
咖啡豆应助科研通管家采纳,获得50
3秒前
乐山乐水应助lily88采纳,获得10
4秒前
归海含烟完成签到,获得积分10
4秒前
万能图书馆应助lily88采纳,获得10
4秒前
Akim应助Hrentiken采纳,获得10
4秒前
5秒前
春江发布了新的文献求助10
6秒前
露露发布了新的文献求助10
10秒前
馋馋完成签到,获得积分10
10秒前
sleepy完成签到,获得积分20
10秒前
10秒前
任性完成签到 ,获得积分10
13秒前
a846204516发布了新的文献求助10
15秒前
烟花应助赵聚星采纳,获得100
16秒前
17秒前
Amber发布了新的文献求助10
17秒前
18秒前
rush完成签到,获得积分10
18秒前
斯文败类应助健康的安安采纳,获得10
18秒前
脑洞疼应助热情芝麻采纳,获得10
20秒前
大聪明发布了新的文献求助10
20秒前
研友_ZAe4qZ发布了新的文献求助10
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140111
求助须知:如何正确求助?哪些是违规求助? 2790982
关于积分的说明 7797203
捐赠科研通 2447324
什么是DOI,文献DOI怎么找? 1301841
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194