Text mining techniques for patent analysis

计算机科学 术语 专利可视化 过程(计算) 集合(抽象数据类型) 鉴定(生物学) 情报检索 数据挖掘 领域(数学分析) 关联规则学习 分割 信息抽取 人工智能 数据科学 哲学 数学分析 操作系统 生物 植物 程序设计语言 语言学 数学
作者
Yuen‐Hsien Tseng,Chi-Jen Lin,Yu-I Lin
出处
期刊:Information Processing and Management [Elsevier]
卷期号:43 (5): 1216-1247 被引量:664
标识
DOI:10.1016/j.ipm.2006.11.011
摘要

Patent documents contain important research results. However, they are lengthy and rich in technical terminology such that it takes a lot of human efforts for analyses. Automatic tools for assisting patent engineers or decision makers in patent analysis are in great demand. This paper describes a series of text mining techniques that conforms to the analytical process used by patent analysts. These techniques include text segmentation, summary extraction, feature selection, term association, cluster generation, topic identification, and information mapping. The issues of efficiency and effectiveness are considered in the design of these techniques. Some important features of the proposed methodology include a rigorous approach to verify the usefulness of segment extracts as the document surrogates, a corpus- and dictionary-free algorithm for keyphrase extraction, an efficient co-word analysis method that can be applied to large volume of patents, and an automatic procedure to create generic cluster titles for ease of result interpretation. Evaluation of these techniques was conducted. The results confirm that the machine-generated summaries do preserve more important content words than some other sections for classification. To demonstrate the feasibility, the proposed methodology was applied to a real-world patent set for domain analysis and mapping, which shows that our approach is more effective than existing classification systems. The attempt in this paper to automate the whole process not only helps create final patent maps for topic analyses, but also facilitates or improves other patent analysis tasks such as patent classification, organization, knowledge sharing, and prior art searches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘小姐完成签到,获得积分10
刚刚
酷波er应助danielsong采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
传奇3应助叮叮当采纳,获得10
2秒前
司空元正发布了新的文献求助10
2秒前
过时的画板完成签到,获得积分10
3秒前
风趣冰棍发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
八一驳回了烟花应助
4秒前
Evander发布了新的文献求助10
4秒前
Criminology34应助尊敬帅哥采纳,获得10
4秒前
一树梨花白完成签到,获得积分20
5秒前
5秒前
墨旱莲完成签到,获得积分10
5秒前
BareBear应助zzrg采纳,获得10
5秒前
tangshijun发布了新的文献求助10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
冷艳的灭龙完成签到,获得积分10
5秒前
大个应助科研通管家采纳,获得10
6秒前
Gauss应助科研通管家采纳,获得20
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Wolfgang发布了新的文献求助10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
情怀应助四夕水窖采纳,获得10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
ziptip完成签到,获得积分10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553