Text mining techniques for patent analysis

计算机科学 术语 专利可视化 过程(计算) 集合(抽象数据类型) 鉴定(生物学) 情报检索 数据挖掘 领域(数学分析) 关联规则学习 分割 信息抽取 人工智能 数据科学 数学分析 哲学 语言学 植物 数学 生物 程序设计语言 操作系统
作者
Yuen‐Hsien Tseng,Chi-Jen Lin,Yu-I Lin
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:43 (5): 1216-1247 被引量:664
标识
DOI:10.1016/j.ipm.2006.11.011
摘要

Patent documents contain important research results. However, they are lengthy and rich in technical terminology such that it takes a lot of human efforts for analyses. Automatic tools for assisting patent engineers or decision makers in patent analysis are in great demand. This paper describes a series of text mining techniques that conforms to the analytical process used by patent analysts. These techniques include text segmentation, summary extraction, feature selection, term association, cluster generation, topic identification, and information mapping. The issues of efficiency and effectiveness are considered in the design of these techniques. Some important features of the proposed methodology include a rigorous approach to verify the usefulness of segment extracts as the document surrogates, a corpus- and dictionary-free algorithm for keyphrase extraction, an efficient co-word analysis method that can be applied to large volume of patents, and an automatic procedure to create generic cluster titles for ease of result interpretation. Evaluation of these techniques was conducted. The results confirm that the machine-generated summaries do preserve more important content words than some other sections for classification. To demonstrate the feasibility, the proposed methodology was applied to a real-world patent set for domain analysis and mapping, which shows that our approach is more effective than existing classification systems. The attempt in this paper to automate the whole process not only helps create final patent maps for topic analyses, but also facilitates or improves other patent analysis tasks such as patent classification, organization, knowledge sharing, and prior art searches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怡春院李老鸨完成签到,获得积分10
刚刚
科研通AI6应助迅速的宛海采纳,获得10
1秒前
1秒前
2秒前
bingo完成签到,获得积分10
2秒前
彭于晏应助zgd采纳,获得10
2秒前
乌冬面发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
番茄爱喝粥完成签到,获得积分10
6秒前
6秒前
livian发布了新的文献求助10
6秒前
DL发布了新的文献求助10
7秒前
7秒前
言西早完成签到 ,获得积分10
8秒前
WWWUBING完成签到,获得积分10
8秒前
8秒前
红柚完成签到,获得积分10
10秒前
10秒前
李爱国应助tdtk采纳,获得10
10秒前
Lxxixixi发布了新的文献求助10
10秒前
刘凯完成签到,获得积分10
11秒前
科研通AI6应助yl采纳,获得10
11秒前
CR7应助乌冬面采纳,获得20
11秒前
11秒前
11秒前
小白发布了新的文献求助20
11秒前
12秒前
就这样完成签到 ,获得积分10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
13秒前
13秒前
zhazhalaoke应助科研通管家采纳,获得10
13秒前
zhazhalaoke应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871