Text mining techniques for patent analysis

计算机科学 术语 专利可视化 过程(计算) 集合(抽象数据类型) 鉴定(生物学) 情报检索 数据挖掘 领域(数学分析) 关联规则学习 分割 信息抽取 人工智能 数据科学 哲学 数学分析 操作系统 生物 植物 程序设计语言 语言学 数学
作者
Yuen‐Hsien Tseng,Chi-Jen Lin,Yu-I Lin
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:43 (5): 1216-1247 被引量:664
标识
DOI:10.1016/j.ipm.2006.11.011
摘要

Patent documents contain important research results. However, they are lengthy and rich in technical terminology such that it takes a lot of human efforts for analyses. Automatic tools for assisting patent engineers or decision makers in patent analysis are in great demand. This paper describes a series of text mining techniques that conforms to the analytical process used by patent analysts. These techniques include text segmentation, summary extraction, feature selection, term association, cluster generation, topic identification, and information mapping. The issues of efficiency and effectiveness are considered in the design of these techniques. Some important features of the proposed methodology include a rigorous approach to verify the usefulness of segment extracts as the document surrogates, a corpus- and dictionary-free algorithm for keyphrase extraction, an efficient co-word analysis method that can be applied to large volume of patents, and an automatic procedure to create generic cluster titles for ease of result interpretation. Evaluation of these techniques was conducted. The results confirm that the machine-generated summaries do preserve more important content words than some other sections for classification. To demonstrate the feasibility, the proposed methodology was applied to a real-world patent set for domain analysis and mapping, which shows that our approach is more effective than existing classification systems. The attempt in this paper to automate the whole process not only helps create final patent maps for topic analyses, but also facilitates or improves other patent analysis tasks such as patent classification, organization, knowledge sharing, and prior art searches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助胡楠采纳,获得10
1秒前
拾年完成签到,获得积分10
1秒前
1秒前
1秒前
舒舒完成签到,获得积分10
1秒前
2秒前
3秒前
tree完成签到,获得积分10
3秒前
ytong发布了新的文献求助10
3秒前
wanci应助笨笨熊采纳,获得10
4秒前
feifei发布了新的文献求助10
4秒前
Hello应助wy1693207859采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
QUA应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得20
5秒前
干净以珊发布了新的文献求助10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
环游世界完成签到 ,获得积分10
5秒前
银杏完成签到 ,获得积分10
5秒前
期刊应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
mxmx完成签到,获得积分10
6秒前
清风与你发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
axn完成签到,获得积分10
8秒前
柒年啵啵完成签到 ,获得积分10
8秒前
标致的绿柏完成签到,获得积分20
9秒前
海东来发布了新的文献求助100
9秒前
研友_VZG7GZ应助wo采纳,获得10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979289
求助须知:如何正确求助?哪些是违规求助? 3523220
关于积分的说明 11216715
捐赠科研通 3260668
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807111