白藜芦醇
化学
内皮干细胞
药理学
细胞损伤
氧化应激
线粒体
生物化学
医学
体外
作者
Kiran S. Panickar,Bolin Qin,Richard A. Anderson
标识
DOI:10.1179/1476830514y.0000000127
摘要
Polyphenols possess antioxidant and anti-inflammatory properties. Oxidative stress (OS) and inflammation have been implicated in the pathogenesis of cytotoxic brain edema in cerebral ischemia. In addition, OS and pro-inflammatory cytokines also damage the endothelial cells and the neurovascular unit. Endothelial cell swelling may contribute to a leaky blood-brain barrier which may result in vasogenic edema in the continued presence of the existing cytotoxic edema. We investigated the protective effects of polyphenols on cytotoxic cell swelling in bEND3 endothelial cultures subjected to 5 hours oxygen-glucose deprivation (OGD). A polyphenol trimer from cinnamon (cinnamtannin D1), a polyphenol-rich extract from green tea, and resveratrol prevented the OGD-induced rise in mitochondrial free radicals, cell swelling, and the dissipation of the inner mitochondrial membrane potential. Monocyte chemoattractant protein (also called CCL2), a chemokine, but not tumor necrosis factor-α or interleukin-6, augmented the cell swelling. This effect of monochemoattractant protein 1-1 was attenuated by the polyphenols. Cyclosporin A, a blocker of the mitochondrial permeability transition pore, did not attenuate cell swelling but BAPTA-AM, an intracellular calcium chelator did, indicating a role of [Ca(2+)]i but not the mPT in cell swelling. These results indicate that the polyphenols reduce mitochondrial reactive oxygen species and subsequent cell swelling in endothelial cells following ischemic injury and thus may reduce brain edema and associated neural damage in ischemia. One possible mechanism by which the polyphenols may attenuate endothelial cell swelling is through the reduction in [Ca(2+)]i.
科研通智能强力驱动
Strongly Powered by AbleSci AI