胶质细胞源性神经生长因子
神经营养因子
神经保护
GDNF配体家族
神经科学
遗传增强
医学
癌症研究
药理学
生物
细胞生物学
内科学
生物化学
基因
受体
作者
Susana Revilla,Suzanna Ursulet,María Jesús Álvarez‐López,Marco Castro,Unai Perpiñá,Yoelvis García‐Mesa,Analı́a Bortolozzi,Lydia Giménez‐Llort,Perla Kaliman,Rosa Cristòfol,Chamsy Sarkis,Coral Sanfeliu
摘要
Summary Aims Glial cell‐derived neurotrophic factor (GDNF) is emerging as a potent neurotrophic factor with therapeutic potential against a range of neurodegenerative conditions including Alzheimer's disease (AD). We assayed the effects of GDNF treatment in AD experimental models through gene‐therapy procedures. Methods Recombinant lentiviral vectors were used to overexpress GDNF gene in hippocampal astrocytes of 3xTg‐AD mice in vivo , and also in the MC65 human neuroblastoma that conditionally overexpresses the 99‐residue carboxyl‐terminal (C99) fragment of the amyloid precursor protein. Results After 6 months of overexpressing GDNF, 10‐month‐old 3xTg‐AD mice showed preserved learning and memory, while their counterparts transduced with a green fluorescent protein vector showed cognitive loss. GDNF therapy did not significantly reduce amyloid and tau pathology, but rather, induced a potent upregulation of brain‐derived neurotrophic factor that may act in concert with GDNF to protect neurons from atrophy and degeneration. MC65 cells overexpressing GDNF showed an abolishment of oxidative stress and cell death that was at least partially mediated by a reduced presence of intracellular C99 and derived amyloid β oligomers. Conclusions GDNF induced neuroprotection in the AD experimental models used. Lentiviral vectors engineered to overexpress GDNF showed to be safe and effective, both as a potential gene therapy and as a tool to uncover the mechanisms of GDNF neuroprotection, including cross talk between astrocytes and neurons in the injured brain.
科研通智能强力驱动
Strongly Powered by AbleSci AI