Comparative rangewide phylogeography of four endemic Taiwanese bat species

生物 系统地理学 进化生物学 亚种 生态学 溯祖理论 遗传多样性 克莱德 系统发育树 动物 人口 航程(航空) 人口历史 物种复合体 生物扩散 生物地理学 变异
作者
Hao-Chih Kuo,Shiang-Fan Chen,Yin-Ping Fang,Jon Flanders,Stephen J. Rossiter
出处
期刊:Molecular Ecology [Wiley]
卷期号:23 (14): 3566-3586 被引量:16
标识
DOI:10.1111/mec.12838
摘要

Phylogeographic reconstructions of codistributed taxa can help reveal the interplay between abiotic factors, such as altitude and climate, and species-specific attributes, in shaping patterns of population genetic structure. Recent studies also demonstrate the value of both rangewide sampling and species distribution modelling (SDM) in comparative phylogeography. Here, we combine these approaches to study the population histories of four phylogenetically related forest-dependent bat species. All are endemic to the mountainous island of Taiwan but show differences in their tolerance to altitude, with Murina gracilis considered to be a high-altitude specialist, M. recondita and Kerivoula sp. low-altitude specialists, and M. puta an altitudinal generalist. We tested the prediction that contrasting habitat preferences would impact on patterns of past and contemporary gene flow and found broad concordance between the results of population genetic analyses and species distribution models based on the Model for Interdisciplinary Research on Climate. Both lowland species showed evidence of genetic divergence between the east and west of the island, consistent with SDMs that indicated the Central Mountain Range (CMR) has presented a long-term and continuous barrier to gene flow since before the Last Glacial Maximum. In contrast, Murina gracilis and M. puta showed lower degrees of historical isolation and genetic differentiation associated with the CMR, reflecting greater gene flow, possibly coupled with past population growth in M. puta. Together our results highlight the usefulness of combining distribution models with phylogeographic analyses to understand the drivers of genetic structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
诸笑白发布了新的文献求助10
2秒前
2秒前
研友_LOK59L完成签到,获得积分10
4秒前
七子完成签到 ,获得积分10
5秒前
郑盼秋完成签到,获得积分10
5秒前
youjiang发布了新的文献求助10
6秒前
8秒前
孤独收割人完成签到,获得积分10
8秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
10秒前
Upupcc发布了新的文献求助10
12秒前
12秒前
勤劳落雁发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
周周发布了新的文献求助10
14秒前
15秒前
科研通AI5应助解青文采纳,获得10
15秒前
科研通AI5应助魏伯安采纳,获得30
15秒前
nekoneko完成签到,获得积分10
18秒前
18秒前
19秒前
帅关发布了新的文献求助10
19秒前
yyyyy语言发布了新的文献求助10
20秒前
asheng98完成签到 ,获得积分10
21秒前
Chen完成签到,获得积分10
21秒前
慕青应助guajiguaji采纳,获得10
22秒前
圣晟胜发布了新的文献求助10
23秒前
23秒前
23秒前
不会失忆完成签到,获得积分10
25秒前
思源应助路边一颗小草采纳,获得10
25秒前
上官若男应助帅关采纳,获得10
26秒前
qin完成签到,获得积分10
27秒前
27秒前
流浪小诗人完成签到,获得积分10
27秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849