Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie?

生物 机制(生物学) 淀粉样蛋白(真菌学) 结晶 病毒学 瘙痒 疾病 神经科学 朊蛋白 病理 植物 化学工程 哲学 认识论 工程类 医学
作者
Joseph T. Jarrett,Peter T. Lansbury
出处
期刊:Cell [Elsevier]
卷期号:73 (6): 1055-1058 被引量:2147
标识
DOI:10.1016/0092-8674(93)90635-4
摘要

Joseph T. Jerrett and Peter T. Lansbury, Jr. Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the presence of cerebral amyloid plaque (reviewed by Selkoe, 1991), a highly ordered protein ag- gregate defined by its insolubility and fibrillar structure (Lansbury, 1992). The AD amyloid protein (p protein) is a secreted protein of unknown function that is overproduced in some but not all AD cases (Seubert et al., 1992; Shoji et al., 1992). Acausal relationship between amyloid forma- tion and AD has not been proven, but the slow onset of symptoms appears to parallel the gradual deposition of amyloid. Therefore, it is important to understand the mo- lecular mechanism of amyloid formation and to explain why the p protein aggregates in diseased individuals (Cit- ron et al., 1992; Cai et al., 1993). In this review, a simple chemical explanation is proposed, based on the observa- tion that in vitro amyloid formation bears a mechanistic resemblance to processes involving ordered protein ag- gregation (such as protein crystallization and microtubule formation), which will be referred to as nucleation- dependent polymerizations. Like AD, the human prion diseases, Creutzfeldt-Jakob disease and Gertsmann-StrBussler-Scheinker disease, are characterized by the slow onset of neurodegeneration. Brain pathology in these diseases resembles that of AD (Prusiner, 1964; Baker and Ridley, 1992) and is also char- acterized by aggregation of a normal cellular protein, prion protein (PrP) (rather than the p protein), often in amyloid plaques (reviewed by Prusiner, 1991). In contrast with AD, the pathogenic nature of PrP aggregates has been estab- lished, thanks to extensive work on the transmissible prion disease, scrapie. The infective agent of scrapie may oper- ate by accelerating the step in amyloid formation that is normally rate determining (Griffith, 1967; Prusiner, 1991). We propose that this step is mechanistically relevant to amyloid formation in human prion disease and in AD; it is the formation of an ordered nucleus, which is the defining characteristic of a nucleation-dependent polymerization. According to this hypothesis, the transmission of scrapie and the initiation of AD may both involve the seeding of amyloid formation. Protein Solubility Is Normally Operationally Defined The measurement of protein solubility often reflects a ki- netic effect rather than true thermodynamic solubility. For instance, when a protein solution appears to be clear throughout the course of an experiment, the protein is defined as soluble, although precipitation may eventually occur. The rate at which a protein polymerizes and precipi- tates is not necessarily related to its thermodynamic solu- bility. However, both properties may be relevant to the pathogenesis and treatment of amyloid diseases. Proteins can form different types of insoluble aggre- gates. Amorphous aggregates have multiple protein con- formations and ill-defined intermolecular interactions. In contrast, protein crystals are often characterized by a sin- gle protein conformation and a single well-defined intermo- lecular packing arrangement. Ordered noncrystalline polymers such as amyloid share these properties. In fact, amyloid can be thought of as a one-dimensional crystal in which packing in the plane perpendicular to the direction of fibril growth is nonuniform (Lansbury, 1992). Amor- phous aggregates can form rapidly when the protein con- centration exceeds the solubility. However, crystal formation requires time, owing to the kinetic barrier im- posed by nucleus formation, the rate-determining step. Ordered noncrystalline protein polymers such as amyloid share this requirement for nucleation. Nucleation-Dependent Polymerization Is Common Nucleation-dependent protein polymerization describes many well-characterized processes, including protein crystallization, microtubule assembly, flagellum assem- bly, sickle-cell hemoglobin fibril formation, bacteriophage procapsid assembly, and actin polymerization. A simple general mechanism is illustrated for the formation of a helical protein polymer in Figure 1. Nucleus formation re- quires a series of association steps that are thermodynam- ically unfavorable (K, > 1) because monomers contact the growing polymer at multiple sites, resulting in rapid polymerization/ growth. A distinctive feature of a nucleation-dependent polymer-
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助开放的傲柔采纳,获得30
5秒前
6秒前
7秒前
开心果子完成签到,获得积分10
8秒前
务实饼干完成签到,获得积分10
9秒前
anan发布了新的文献求助10
10秒前
Bingo完成签到,获得积分10
11秒前
严逍遥完成签到,获得积分10
11秒前
12秒前
WWY完成签到,获得积分10
12秒前
13秒前
零度完成签到,获得积分10
14秒前
落羽发布了新的文献求助10
15秒前
眯眯眼的衬衫应助Whitney采纳,获得10
15秒前
16秒前
math完成签到 ,获得积分10
16秒前
咿咿呀呀发布了新的文献求助10
18秒前
苏幕完成签到,获得积分10
18秒前
18秒前
rr完成签到,获得积分10
18秒前
adearfish完成签到 ,获得积分10
19秒前
zhinanzhen发布了新的文献求助10
20秒前
Singularity应助小鼠星球采纳,获得20
20秒前
酒剑仙完成签到,获得积分10
23秒前
24秒前
Lynn应助Aurora采纳,获得10
24秒前
24秒前
科研通AI2S应助落羽采纳,获得10
25秒前
CodeCraft应助落羽采纳,获得10
25秒前
25秒前
26秒前
27秒前
27秒前
十七应助WYX采纳,获得10
28秒前
28秒前
所所应助严逍遥采纳,获得10
28秒前
29秒前
phylicia发布了新的文献求助10
29秒前
30秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397331
求助须知:如何正确求助?哪些是违规求助? 3006505
关于积分的说明 8821487
捐赠科研通 2693700
什么是DOI,文献DOI怎么找? 1475421
科研通“疑难数据库(出版商)”最低求助积分说明 682396
邀请新用户注册赠送积分活动 675758