已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie?

生物 机制(生物学) 淀粉样蛋白(真菌学) 结晶 病毒学 瘙痒 疾病 神经科学 朊蛋白 病理 植物 化学工程 医学 认识论 工程类 哲学
作者
Joseph T. Jarrett,Peter T. Lansbury
出处
期刊:Cell [Elsevier]
卷期号:73 (6): 1055-1058 被引量:2171
标识
DOI:10.1016/0092-8674(93)90635-4
摘要

Joseph T. Jerrett and Peter T. Lansbury, Jr. Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the presence of cerebral amyloid plaque (reviewed by Selkoe, 1991), a highly ordered protein ag- gregate defined by its insolubility and fibrillar structure (Lansbury, 1992). The AD amyloid protein (p protein) is a secreted protein of unknown function that is overproduced in some but not all AD cases (Seubert et al., 1992; Shoji et al., 1992). Acausal relationship between amyloid forma- tion and AD has not been proven, but the slow onset of symptoms appears to parallel the gradual deposition of amyloid. Therefore, it is important to understand the mo- lecular mechanism of amyloid formation and to explain why the p protein aggregates in diseased individuals (Cit- ron et al., 1992; Cai et al., 1993). In this review, a simple chemical explanation is proposed, based on the observa- tion that in vitro amyloid formation bears a mechanistic resemblance to processes involving ordered protein ag- gregation (such as protein crystallization and microtubule formation), which will be referred to as nucleation- dependent polymerizations. Like AD, the human prion diseases, Creutzfeldt-Jakob disease and Gertsmann-StrBussler-Scheinker disease, are characterized by the slow onset of neurodegeneration. Brain pathology in these diseases resembles that of AD (Prusiner, 1964; Baker and Ridley, 1992) and is also char- acterized by aggregation of a normal cellular protein, prion protein (PrP) (rather than the p protein), often in amyloid plaques (reviewed by Prusiner, 1991). In contrast with AD, the pathogenic nature of PrP aggregates has been estab- lished, thanks to extensive work on the transmissible prion disease, scrapie. The infective agent of scrapie may oper- ate by accelerating the step in amyloid formation that is normally rate determining (Griffith, 1967; Prusiner, 1991). We propose that this step is mechanistically relevant to amyloid formation in human prion disease and in AD; it is the formation of an ordered nucleus, which is the defining characteristic of a nucleation-dependent polymerization. According to this hypothesis, the transmission of scrapie and the initiation of AD may both involve the seeding of amyloid formation. Protein Solubility Is Normally Operationally Defined The measurement of protein solubility often reflects a ki- netic effect rather than true thermodynamic solubility. For instance, when a protein solution appears to be clear throughout the course of an experiment, the protein is defined as soluble, although precipitation may eventually occur. The rate at which a protein polymerizes and precipi- tates is not necessarily related to its thermodynamic solu- bility. However, both properties may be relevant to the pathogenesis and treatment of amyloid diseases. Proteins can form different types of insoluble aggre- gates. Amorphous aggregates have multiple protein con- formations and ill-defined intermolecular interactions. In contrast, protein crystals are often characterized by a sin- gle protein conformation and a single well-defined intermo- lecular packing arrangement. Ordered noncrystalline polymers such as amyloid share these properties. In fact, amyloid can be thought of as a one-dimensional crystal in which packing in the plane perpendicular to the direction of fibril growth is nonuniform (Lansbury, 1992). Amor- phous aggregates can form rapidly when the protein con- centration exceeds the solubility. However, crystal formation requires time, owing to the kinetic barrier im- posed by nucleus formation, the rate-determining step. Ordered noncrystalline protein polymers such as amyloid share this requirement for nucleation. Nucleation-Dependent Polymerization Is Common Nucleation-dependent protein polymerization describes many well-characterized processes, including protein crystallization, microtubule assembly, flagellum assem- bly, sickle-cell hemoglobin fibril formation, bacteriophage procapsid assembly, and actin polymerization. A simple general mechanism is illustrated for the formation of a helical protein polymer in Figure 1. Nucleus formation re- quires a series of association steps that are thermodynam- ically unfavorable (K, > 1) because monomers contact the growing polymer at multiple sites, resulting in rapid polymerization/ growth. A distinctive feature of a nucleation-dependent polymer-
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无可无不可完成签到,获得积分10
刚刚
NEO完成签到 ,获得积分10
1秒前
煜清清完成签到 ,获得积分10
1秒前
A.y.w完成签到,获得积分10
1秒前
etrh完成签到 ,获得积分10
1秒前
Kai完成签到 ,获得积分10
4秒前
陈子宇完成签到 ,获得积分10
4秒前
归去来兮发布了新的文献求助10
5秒前
解语花完成签到,获得积分10
5秒前
7秒前
解语花发布了新的文献求助200
8秒前
8秒前
池雨完成签到 ,获得积分10
8秒前
13秒前
王瑶发布了新的文献求助10
13秒前
冰冰发布了新的文献求助10
13秒前
小熊天天学习完成签到 ,获得积分10
16秒前
lixia完成签到 ,获得积分10
18秒前
Jodie发布了新的文献求助10
18秒前
gugugu发布了新的文献求助10
19秒前
飘逸的语琴完成签到,获得积分20
19秒前
冰冰完成签到,获得积分20
19秒前
20秒前
王瑶完成签到,获得积分20
20秒前
huanger完成签到,获得积分0
23秒前
小胖子发布了新的文献求助10
25秒前
wlp鹏完成签到,获得积分10
25秒前
Bella完成签到 ,获得积分10
27秒前
Alex发布了新的文献求助200
27秒前
雪生在无人荒野完成签到,获得积分10
27秒前
hay完成签到,获得积分20
28秒前
波波波波波6764完成签到 ,获得积分10
31秒前
JamesPei应助个性冰海采纳,获得10
38秒前
40秒前
飘逸的语琴关注了科研通微信公众号
46秒前
46秒前
47秒前
48秒前
48秒前
个性冰海发布了新的文献求助10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458782
求助须知:如何正确求助?哪些是违规求助? 4564757
关于积分的说明 14296896
捐赠科研通 4489835
什么是DOI,文献DOI怎么找? 2459317
邀请新用户注册赠送积分活动 1449038
关于科研通互助平台的介绍 1424524