数学
黎曼zeta函数
价值(数学)
伯努利数
组合数学
黎曼假设
明星(博弈论)
功能(生物学)
纯数学
数学分析
统计
进化生物学
生物
标识
DOI:10.1142/s179304211750035x
摘要
For [Formula: see text], let [Formula: see text] be the sum of all multiple zeta values with even arguments whose weight is [Formula: see text] and whose depth is [Formula: see text]. Of course [Formula: see text] is the value [Formula: see text] of the Riemann zeta function at [Formula: see text], and it is well known that [Formula: see text]. Recently Shen and Cai gave formulas for [Formula: see text] and [Formula: see text] in terms of [Formula: see text] and [Formula: see text]. We give two formulas for [Formula: see text], both valid for arbitrary [Formula: see text], one of which generalizes the Shen–Cai results; by comparing the two we obtain a Bernoulli-number identity. We also give explicit generating functions for the numbers [Formula: see text] and for the analogous numbers [Formula: see text] defined using multiple zeta-star values of even arguments.
科研通智能强力驱动
Strongly Powered by AbleSci AI