核糖核酸
分子动力学
核酸结构
碱基对
化学
背景(考古学)
螺旋(腹足类)
结晶学
生物系统
计算生物学
化学物理
生物
DNA
计算化学
生物化学
基因
古生物学
生态学
蜗牛
作者
Defang Ouyang,Hong Zhang,Dirk‐Peter Herten,Harendra S. Parekh,Sean C. Smith
摘要
We use molecular dynamics simulations to compare the conformational structure and dynamics of a 21-base pair RNA sequence initially constructed according to the canonical A-RNA and A′-RNA forms in the presence of counterions and explicit water. Our study aims to add a dynamical perspective to the solid-state structural information that has been derived from X-ray data for these two characteristic forms of RNA. Analysis of the three main structural descriptors commonly used to differentiate between the two forms of RNA – namely major groove width, inclination and the number of base pairs in a helical twist – over a 30 ns simulation period reveals a flexible structure in aqueous solution with fluctuations in the values of these structural parameters encompassing the range between the two crystal forms and more. This provides evidence to suggest that the identification of distinct A-RNA and A′-RNA structures, while relevant in the crystalline form, may not be generally relevant in the context of RNA in the aqueous phase. The apparent structural flexibility observed in our simulations is likely to bear ramifications for the interactions of RNA with biological molecules (e.g. proteins) and non-biological molecules (e.g. non-viral gene delivery vectors).
科研通智能强力驱动
Strongly Powered by AbleSci AI