曲折
材料科学
吸收(声学)
多孔性
几何学
兰姆达
多孔介质
降噪系数
半径
物理
机械
复合材料
光学
数学
计算机安全
计算机科学
作者
Camille Perrot,F. Chevillotte,Raymond Panneton,Xavier Olny
摘要
Results from a numerical study examining micro-/macrorelations linking local geometry parameters to sound absorption properties are presented. For a hexagonal structure of solid fibers, the porosity ϕ, the thermal characteristic length Λ′, the static viscous permeability k0, the tortuosity α∞, the viscous characteristic length Λ, and the sound absorption coefficient are computed. Numerical solutions of the steady Stokes and electrical equations are employed to provide k0, α∞, and Λ. Hybrid estimates based on direct numerical evaluation of ϕ, Λ′, k0, α∞, Λ, and the analytical model derived by Johnson, Allard, and Champoux are used to relate varying (i) throat size, (ii) pore size, and (iii) fibers’ cross-section shapes to the sound absorption spectrum. The result of this paper tends to demonstrate the important effect of throat size in the sound absorption level, cell size in the sound absorption frequency selectivity, and fibers’ cross-section shape in the porous material weight reduction. In a hexagonal porous structure with solid fibers, the sound absorption level will tend to be maximized with a 48±10μm throat size corresponding to an intermediate resistivity, a 13±8μm fiber radius associated with relatively small interfiber distances, and convex triangular cross-section shape fibers allowing weight reduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI