Maximum entropy modeling of species geographic distributions

环境生态位模型 最大熵原理 航程(航空) 物种分布 数学 统计 生态学 计算机科学 生物 生态位 复合材料 栖息地 材料科学
作者
Steven J. Phillips,Robert P. Anderson,Robert E. Schapire
出处
期刊:Ecological Modelling [Elsevier]
卷期号:190 (3-4): 231-259 被引量:16227
标识
DOI:10.1016/j.ecolmodel.2005.03.026
摘要

The availability of detailed environmental data, together with inexpensive and powerful computers, has fueled a rapid increase in predictive modeling of species environmental requirements and geographic distributions. For some species, detailed presence/absence occurrence data are available, allowing the use of a variety of standard statistical techniques. However, absence data are not available for most species. In this paper, we introduce the use of the maximum entropy method (Maxent) for modeling species geographic distributions with presence-only data. Maxent is a general-purpose machine learning method with a simple and precise mathematical formulation, and it has a number of aspects that make it well-suited for species distribution modeling. In order to investigate the efficacy of the method, here we perform a continental-scale case study using two Neotropical mammals: a lowland species of sloth, Bradypus variegatus, and a small montane murid rodent, Microryzomys minutus. We compared Maxent predictions with those of a commonly used presence-only modeling method, the Genetic Algorithm for Rule-Set Prediction (GARP). We made predictions on 10 random subsets of the occurrence records for both species, and then used the remaining localities for testing. Both algorithms provided reasonable estimates of the species’ range, far superior to the shaded outline maps available in field guides. All models were significantly better than random in both binomial tests of omission and receiver operating characteristic (ROC) analyses. The area under the ROC curve (AUC) was almost always higher for Maxent, indicating better discrimination of suitable versus unsuitable areas for the species. The Maxent modeling approach can be used in its present form for many applications with presence-only datasets, and merits further research and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助可耐的不平采纳,获得10
刚刚
刚刚
田様应助可耐的不平采纳,获得10
1秒前
Akim应助可耐的不平采纳,获得10
1秒前
JamesPei应助luchong采纳,获得30
1秒前
大个应助可耐的不平采纳,获得10
1秒前
1秒前
Jasper应助可耐的不平采纳,获得10
1秒前
英俊的铭应助可耐的不平采纳,获得10
1秒前
研友_VZG7GZ应助可耐的不平采纳,获得10
1秒前
星辰大海应助可耐的不平采纳,获得10
2秒前
丘比特应助可耐的不平采纳,获得10
2秒前
2秒前
2秒前
coco发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
研友_VZG7GZ应助M27采纳,获得10
4秒前
luchong完成签到,获得积分10
4秒前
hylqj123发布了新的文献求助20
4秒前
cc完成签到 ,获得积分10
5秒前
zjl关闭了zjl文献求助
5秒前
5秒前
123发布了新的文献求助10
5秒前
francesliu完成签到,获得积分10
6秒前
yyhgyg完成签到,获得积分10
6秒前
yy发布了新的文献求助10
6秒前
聪慧翠风发布了新的文献求助10
6秒前
桐桐应助小胡采纳,获得10
7秒前
ajia应助专注白昼采纳,获得10
7秒前
LJJ完成签到,获得积分10
7秒前
tutu完成签到,获得积分20
7秒前
聪111应助淡淡的南风采纳,获得100
7秒前
7秒前
Mic应助天真千易采纳,获得10
7秒前
浮游应助天真千易采纳,获得10
7秒前
Li发布了新的文献求助10
7秒前
Mic应助天真千易采纳,获得30
7秒前
yy完成签到,获得积分10
7秒前
asdf应助天真千易采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978