Maximum entropy modeling of species geographic distributions

环境生态位模型 最大熵原理 航程(航空) 物种分布 数学 统计 生态学 计算机科学 生物 生态位 复合材料 栖息地 材料科学
作者
Steven J. Phillips,Robert P. Anderson,Robert E. Schapire
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:190 (3-4): 231-259 被引量:15340
标识
DOI:10.1016/j.ecolmodel.2005.03.026
摘要

The availability of detailed environmental data, together with inexpensive and powerful computers, has fueled a rapid increase in predictive modeling of species environmental requirements and geographic distributions. For some species, detailed presence/absence occurrence data are available, allowing the use of a variety of standard statistical techniques. However, absence data are not available for most species. In this paper, we introduce the use of the maximum entropy method (Maxent) for modeling species geographic distributions with presence-only data. Maxent is a general-purpose machine learning method with a simple and precise mathematical formulation, and it has a number of aspects that make it well-suited for species distribution modeling. In order to investigate the efficacy of the method, here we perform a continental-scale case study using two Neotropical mammals: a lowland species of sloth, Bradypus variegatus, and a small montane murid rodent, Microryzomys minutus. We compared Maxent predictions with those of a commonly used presence-only modeling method, the Genetic Algorithm for Rule-Set Prediction (GARP). We made predictions on 10 random subsets of the occurrence records for both species, and then used the remaining localities for testing. Both algorithms provided reasonable estimates of the species’ range, far superior to the shaded outline maps available in field guides. All models were significantly better than random in both binomial tests of omission and receiver operating characteristic (ROC) analyses. The area under the ROC curve (AUC) was almost always higher for Maxent, indicating better discrimination of suitable versus unsuitable areas for the species. The Maxent modeling approach can be used in its present form for many applications with presence-only datasets, and merits further research and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heyan完成签到,获得积分10
刚刚
萧萧发布了新的文献求助10
1秒前
2秒前
Jasper应助念辞采纳,获得10
2秒前
2秒前
3秒前
隐形曼青应助星星采纳,获得10
3秒前
HP发布了新的文献求助10
4秒前
Cwx2020完成签到,获得积分10
4秒前
8R60d8应助Physio采纳,获得10
4秒前
思与省发布了新的文献求助10
5秒前
ZKcrane完成签到,获得积分10
6秒前
7秒前
8秒前
科目三应助蕊蕊采纳,获得10
9秒前
wangxiaoqing完成签到,获得积分10
9秒前
萧萧完成签到,获得积分10
10秒前
liam发布了新的文献求助50
10秒前
劲秉应助红尘侠客采纳,获得150
10秒前
充电宝应助sandra采纳,获得10
11秒前
阳枝甘禄发布了新的文献求助10
12秒前
独立江湖女完成签到 ,获得积分10
13秒前
一帆风顺发布了新的文献求助50
13秒前
wangfang完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
15秒前
思与省完成签到,获得积分10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
16秒前
我是老大应助科研通管家采纳,获得30
16秒前
情怀应助科研通管家采纳,获得10
17秒前
ash完成签到,获得积分10
17秒前
HP完成签到,获得积分10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748570
求助须知:如何正确求助?哪些是违规求助? 3291631
关于积分的说明 10073772
捐赠科研通 3007459
什么是DOI,文献DOI怎么找? 1651612
邀请新用户注册赠送积分活动 786566
科研通“疑难数据库(出版商)”最低求助积分说明 751765