Maximum entropy modeling of species geographic distributions

环境生态位模型 最大熵原理 航程(航空) 物种分布 数学 统计 生态学 计算机科学 生物 生态位 复合材料 栖息地 材料科学
作者
Steven J. Phillips,Robert P. Anderson,Robert E. Schapire
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:190 (3-4): 231-259 被引量:16227
标识
DOI:10.1016/j.ecolmodel.2005.03.026
摘要

The availability of detailed environmental data, together with inexpensive and powerful computers, has fueled a rapid increase in predictive modeling of species environmental requirements and geographic distributions. For some species, detailed presence/absence occurrence data are available, allowing the use of a variety of standard statistical techniques. However, absence data are not available for most species. In this paper, we introduce the use of the maximum entropy method (Maxent) for modeling species geographic distributions with presence-only data. Maxent is a general-purpose machine learning method with a simple and precise mathematical formulation, and it has a number of aspects that make it well-suited for species distribution modeling. In order to investigate the efficacy of the method, here we perform a continental-scale case study using two Neotropical mammals: a lowland species of sloth, Bradypus variegatus, and a small montane murid rodent, Microryzomys minutus. We compared Maxent predictions with those of a commonly used presence-only modeling method, the Genetic Algorithm for Rule-Set Prediction (GARP). We made predictions on 10 random subsets of the occurrence records for both species, and then used the remaining localities for testing. Both algorithms provided reasonable estimates of the species’ range, far superior to the shaded outline maps available in field guides. All models were significantly better than random in both binomial tests of omission and receiver operating characteristic (ROC) analyses. The area under the ROC curve (AUC) was almost always higher for Maxent, indicating better discrimination of suitable versus unsuitable areas for the species. The Maxent modeling approach can be used in its present form for many applications with presence-only datasets, and merits further research and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朝朝完成签到,获得积分10
刚刚
刚刚
左安彤完成签到,获得积分10
1秒前
打打应助威武的泽洋采纳,获得30
1秒前
Markus发布了新的文献求助30
4秒前
初雪完成签到,获得积分10
4秒前
汉堡包应助蓝色天空采纳,获得10
4秒前
科研通AI6应助sure采纳,获得10
5秒前
ZeKaWa应助tp040900采纳,获得20
5秒前
天天快乐应助无端采纳,获得10
6秒前
张小北完成签到,获得积分10
6秒前
lj发布了新的文献求助10
7秒前
7秒前
英姑应助jitanxiang采纳,获得10
8秒前
萧湘完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
朱厚璁发布了新的文献求助10
12秒前
zhulinling完成签到,获得积分10
12秒前
科研通AI2S应助zqm采纳,获得10
12秒前
12秒前
啊哈完成签到 ,获得积分10
14秒前
15秒前
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助150
16秒前
YElv完成签到,获得积分10
18秒前
jiay发布了新的文献求助30
19秒前
上官若男应助艾克j采纳,获得10
20秒前
QWE发布了新的文献求助10
20秒前
善学以致用应助朱厚璁采纳,获得10
20秒前
无端发布了新的文献求助10
21秒前
蓝色天空发布了新的文献求助10
21秒前
老奈发布了新的文献求助10
21秒前
sen123完成签到,获得积分10
22秒前
23秒前
丘比特应助自觉从云采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Selected papers II : with commentaries 1000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062637
求助须知:如何正确求助?哪些是违规求助? 4286396
关于积分的说明 13356994
捐赠科研通 4104212
什么是DOI,文献DOI怎么找? 2247379
邀请新用户注册赠送积分活动 1252944
关于科研通互助平台的介绍 1183868