Maximum entropy modeling of species geographic distributions

环境生态位模型 最大熵原理 航程(航空) 物种分布 数学 统计 生态学 计算机科学 生物 生态位 复合材料 栖息地 材料科学
作者
Steven J. Phillips,Robert P. Anderson,Robert E. Schapire
出处
期刊:Ecological Modelling [Elsevier]
卷期号:190 (3-4): 231-259 被引量:16227
标识
DOI:10.1016/j.ecolmodel.2005.03.026
摘要

The availability of detailed environmental data, together with inexpensive and powerful computers, has fueled a rapid increase in predictive modeling of species environmental requirements and geographic distributions. For some species, detailed presence/absence occurrence data are available, allowing the use of a variety of standard statistical techniques. However, absence data are not available for most species. In this paper, we introduce the use of the maximum entropy method (Maxent) for modeling species geographic distributions with presence-only data. Maxent is a general-purpose machine learning method with a simple and precise mathematical formulation, and it has a number of aspects that make it well-suited for species distribution modeling. In order to investigate the efficacy of the method, here we perform a continental-scale case study using two Neotropical mammals: a lowland species of sloth, Bradypus variegatus, and a small montane murid rodent, Microryzomys minutus. We compared Maxent predictions with those of a commonly used presence-only modeling method, the Genetic Algorithm for Rule-Set Prediction (GARP). We made predictions on 10 random subsets of the occurrence records for both species, and then used the remaining localities for testing. Both algorithms provided reasonable estimates of the species’ range, far superior to the shaded outline maps available in field guides. All models were significantly better than random in both binomial tests of omission and receiver operating characteristic (ROC) analyses. The area under the ROC curve (AUC) was almost always higher for Maxent, indicating better discrimination of suitable versus unsuitable areas for the species. The Maxent modeling approach can be used in its present form for many applications with presence-only datasets, and merits further research and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
prrrratt发布了新的文献求助10
3秒前
852应助春竹采纳,获得10
4秒前
8秒前
坚定茉莉发布了新的文献求助10
9秒前
12秒前
脑洞疼应助是sxxj啊采纳,获得10
13秒前
wh雨完成签到,获得积分10
14秒前
执着的一兰完成签到,获得积分10
15秒前
16秒前
所所应助wh雨采纳,获得10
18秒前
lll发布了新的文献求助10
18秒前
18秒前
20秒前
23秒前
23秒前
坚定茉莉完成签到,获得积分10
24秒前
zhonglv7应助usang采纳,获得10
24秒前
27秒前
阿伦艾弗森完成签到,获得积分10
28秒前
段清宇完成签到,获得积分20
28秒前
旷野发布了新的文献求助10
28秒前
Jasper应助开拖拉机的芍药采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得30
30秒前
Frank应助科研通管家采纳,获得10
30秒前
内向煎饼应助科研通管家采纳,获得10
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
Frank应助科研通管家采纳,获得10
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
Frank应助科研通管家采纳,获得10
30秒前
小不点应助科研通管家采纳,获得10
30秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
拼搏应助科研通管家采纳,获得10
31秒前
今后应助科研通管家采纳,获得10
31秒前
思源应助科研通管家采纳,获得20
31秒前
JamesPei应助米米采纳,获得10
31秒前
思源应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558014
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670012
捐赠科研通 4584444
什么是DOI,文献DOI怎么找? 2514838
邀请新用户注册赠送积分活动 1489006
关于科研通互助平台的介绍 1459619