Maximum entropy modeling of species geographic distributions

环境生态位模型 最大熵原理 航程(航空) 物种分布 数学 统计 生态学 计算机科学 生物 生态位 复合材料 栖息地 材料科学
作者
Steven J. Phillips,Robert P. Anderson,Robert E. Schapire
出处
期刊:Ecological Modelling [Elsevier]
卷期号:190 (3-4): 231-259 被引量:16227
标识
DOI:10.1016/j.ecolmodel.2005.03.026
摘要

The availability of detailed environmental data, together with inexpensive and powerful computers, has fueled a rapid increase in predictive modeling of species environmental requirements and geographic distributions. For some species, detailed presence/absence occurrence data are available, allowing the use of a variety of standard statistical techniques. However, absence data are not available for most species. In this paper, we introduce the use of the maximum entropy method (Maxent) for modeling species geographic distributions with presence-only data. Maxent is a general-purpose machine learning method with a simple and precise mathematical formulation, and it has a number of aspects that make it well-suited for species distribution modeling. In order to investigate the efficacy of the method, here we perform a continental-scale case study using two Neotropical mammals: a lowland species of sloth, Bradypus variegatus, and a small montane murid rodent, Microryzomys minutus. We compared Maxent predictions with those of a commonly used presence-only modeling method, the Genetic Algorithm for Rule-Set Prediction (GARP). We made predictions on 10 random subsets of the occurrence records for both species, and then used the remaining localities for testing. Both algorithms provided reasonable estimates of the species’ range, far superior to the shaded outline maps available in field guides. All models were significantly better than random in both binomial tests of omission and receiver operating characteristic (ROC) analyses. The area under the ROC curve (AUC) was almost always higher for Maxent, indicating better discrimination of suitable versus unsuitable areas for the species. The Maxent modeling approach can be used in its present form for many applications with presence-only datasets, and merits further research and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
222666完成签到 ,获得积分10
3秒前
小幸丶完成签到,获得积分10
3秒前
玄风应助文静的冷安采纳,获得10
4秒前
5秒前
泥豪泥嚎完成签到 ,获得积分10
6秒前
ccc发布了新的文献求助10
6秒前
所所应助小任性采纳,获得10
6秒前
仲乔妹完成签到,获得积分10
7秒前
7秒前
9秒前
小怂完成签到,获得积分10
9秒前
11秒前
zhuyi_6695发布了新的文献求助10
11秒前
小怂发布了新的文献求助10
12秒前
星辰大海应助霡霂采纳,获得30
13秒前
浮游应助一团小煤球采纳,获得30
14秒前
hh完成签到,获得积分10
14秒前
文静的冷安完成签到,获得积分10
17秒前
bkagyin应助李博采纳,获得10
20秒前
浮游应助懵懂的莛采纳,获得10
21秒前
彭于晏应助我又可以了采纳,获得10
21秒前
ZJakariae完成签到,获得积分10
21秒前
小玄子完成签到,获得积分10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
元谷雪应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
东风压倒西风完成签到,获得积分10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
BowieHuang应助jz采纳,获得10
24秒前
25秒前
落落完成签到 ,获得积分10
27秒前
孟一完成签到,获得积分10
28秒前
ZeKaWa应助hh采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563535
求助须知:如何正确求助?哪些是违规求助? 4648407
关于积分的说明 14684719
捐赠科研通 4590358
什么是DOI,文献DOI怎么找? 2518467
邀请新用户注册赠送积分活动 1491138
关于科研通互助平台的介绍 1462426