Maximum entropy modeling of species geographic distributions

环境生态位模型 最大熵原理 航程(航空) 物种分布 数学 统计 生态学 计算机科学 生物 生态位 复合材料 栖息地 材料科学
作者
Steven J. Phillips,Robert P. Anderson,Robert E. Schapire
出处
期刊:Ecological Modelling [Elsevier]
卷期号:190 (3-4): 231-259 被引量:15340
标识
DOI:10.1016/j.ecolmodel.2005.03.026
摘要

The availability of detailed environmental data, together with inexpensive and powerful computers, has fueled a rapid increase in predictive modeling of species environmental requirements and geographic distributions. For some species, detailed presence/absence occurrence data are available, allowing the use of a variety of standard statistical techniques. However, absence data are not available for most species. In this paper, we introduce the use of the maximum entropy method (Maxent) for modeling species geographic distributions with presence-only data. Maxent is a general-purpose machine learning method with a simple and precise mathematical formulation, and it has a number of aspects that make it well-suited for species distribution modeling. In order to investigate the efficacy of the method, here we perform a continental-scale case study using two Neotropical mammals: a lowland species of sloth, Bradypus variegatus, and a small montane murid rodent, Microryzomys minutus. We compared Maxent predictions with those of a commonly used presence-only modeling method, the Genetic Algorithm for Rule-Set Prediction (GARP). We made predictions on 10 random subsets of the occurrence records for both species, and then used the remaining localities for testing. Both algorithms provided reasonable estimates of the species’ range, far superior to the shaded outline maps available in field guides. All models were significantly better than random in both binomial tests of omission and receiver operating characteristic (ROC) analyses. The area under the ROC curve (AUC) was almost always higher for Maxent, indicating better discrimination of suitable versus unsuitable areas for the species. The Maxent modeling approach can be used in its present form for many applications with presence-only datasets, and merits further research and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT发布了新的文献求助10
2秒前
Jenny发布了新的文献求助10
4秒前
4秒前
完美凝竹发布了新的文献求助10
4秒前
我是站长才怪应助细腻沅采纳,获得10
5秒前
JG完成签到 ,获得积分10
5秒前
hhh完成签到,获得积分20
5秒前
科研通AI5应助想瘦的海豹采纳,获得10
6秒前
随性完成签到 ,获得积分10
6秒前
自由的信仰完成签到,获得积分10
7秒前
9秒前
10秒前
10秒前
夏夏发布了新的文献求助10
11秒前
打打应助Hangerli采纳,获得10
13秒前
完美凝竹完成签到,获得积分10
14秒前
zfzf0422发布了新的文献求助10
15秒前
蜘蛛道理完成签到 ,获得积分10
15秒前
冷傲迎梦发布了新的文献求助10
16秒前
852应助MEME采纳,获得10
16秒前
Godzilla发布了新的文献求助10
16秒前
大模型应助咕噜仔采纳,获得10
17秒前
蒋时晏应助pharmstudent采纳,获得30
17秒前
18秒前
忘羡222发布了新的文献求助20
19秒前
魏伯安发布了新的文献求助10
19秒前
20秒前
不爱吃糖完成签到,获得积分10
20秒前
21秒前
balabala发布了新的文献求助10
22秒前
睿123456完成签到,获得积分10
23秒前
此话当真完成签到,获得积分10
24秒前
26秒前
慕青应助wmmm采纳,获得10
27秒前
科研通AI2S应助夏夏采纳,获得10
27秒前
隐形曼青应助夏夏采纳,获得10
27秒前
睿123456发布了新的文献求助10
27秒前
Godzilla完成签到,获得积分10
27秒前
李健应助ponyy采纳,获得30
27秒前
科研通AI5应助skier采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824