General Theory for Multiple Input-Output Perturbations in Complex Molecular Systems. 1. Linear QSPR Electronegativity Models in Physical, Organic, and Medicinal Chemistry

数量结构-活动关系 摄动(天文学) 微扰理论(量子力学) 统计物理学 应用数学 数学 计算化学 化学 计算机科学 物理 量子力学 机器学习
作者
Humberto González-Dı́az,Sonia Arrasate,Asier Gómez‐SanJuan,Nuria Sotomayor,Esther Lete,Lina Besada-Porto,Juan M. Ruso
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science]
卷期号:13 (14): 1713-1741 被引量:98
标识
DOI:10.2174/1568026611313140011
摘要

In general perturbation methods starts with a known exact solution of a problem and add "small" variation terms in order to approach to a solution for a related problem without known exact solution. Perturbation theory has been widely used in almost all areas of science. Bhor's quantum model, Heisenberg's matrix mechanincs, Feyman diagrams, and Poincare's chaos model or "butterfly effect" in complex systems are examples of perturbation theories. On the other hand, the study of Quantitative Structure-Property Relationships (QSPR) in molecular complex systems is an ideal area for the application of perturbation theory. There are several problems with exact experimental solutions (new chemical reactions, physicochemical properties, drug activity and distribution, metabolic networks, etc.) in public databases like CHEMBL. However, in all these cases, we have an even larger list of related problems without known solutions. We need to know the change in all these properties after a perturbation of initial boundary conditions. It means, when we test large sets of similar, but different, compounds and/or chemical reactions under the slightly different conditions (temperature, time, solvents, enzymes, assays, protein targets, tissues, partition systems, organisms, etc.). However, to the best of our knowledge, there is no QSPR general-purpose perturbation theory to solve this problem. In this work, firstly we review general aspects and applications of both perturbation theory and QSPR models. Secondly, we formulate a general-purpose perturbation theory for multiple-boundary QSPR problems. Last, we develop three new QSPR-Perturbation theory models. The first model classify correctly >100,000 pairs of intra-molecular carbolithiations with 75-95% of Accuracy (Ac), Sensitivity (Sn), and Specificity (Sp). The model predicts probabilities of variations in the yield and enantiomeric excess of reactions due to at least one perturbation in boundary conditions (solvent, temperature, temperature of addition, or time of reaction). The model also account for changes in chemical structure (connectivity structure and/or chirality paterns in substrate, product, electrophile agent, organolithium, and ligand of the asymmetric catalyst). The second model classifies more than 150,000 cases with 85-100% of Ac, Sn, and Sp. The data contains experimental shifts in up to 18 different pharmacological parameters determined in >3000 assays of ADMET (Absorption, Distribution, Metabolism, Elimination, and Toxicity) properties and/or interactions between 31723 drugs and 100 targets (metabolizing enzymes, drug transporters, or organisms). The third model classifies more than 260,000 cases of perturbations in the self-aggregation of drugs and surfactants to form micelles with Ac, Sn, and Sp of 94-95%. The model predicts changes in 8 physicochemical and/or thermodynamics output parameters (critic micelle concentration, aggregation number, degree of ionization, surface area, enthalpy, free energy, entropy, heat capacity) of self-aggregation due to perturbations. The perturbations refers to changes in initial temperature, solvent, salt, salt concentration, solvent, and/or structure of the anion or cation of more than 150 different drugs and surfactants. QSPR-Perturbation Theory models may be useful for multi-objective optimization of organic synthesis, physicochemical properties, biological activity, metabolism, and distribution profiles towards the design of new drugs, surfactants, asymmetric ligands for catalysts, and other materials. Keywords: Perturbation theory, QSPR/QSAR models, ADMET process, Organometalic addition, Carbolithiation reactions, Asymmetric synthesis, Self-aggregation, Markov Chains, Complex networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡拉蹦蹦发布了新的文献求助10
1秒前
早日毕业发布了新的文献求助10
1秒前
哦哦哦叽叽叽完成签到,获得积分20
1秒前
Lz555完成签到 ,获得积分10
2秒前
2秒前
梁漂亮发布了新的文献求助20
3秒前
4秒前
冷傲熊猫发布了新的文献求助30
4秒前
4秒前
今后应助研友_yLpQrn采纳,获得10
4秒前
5秒前
水木公完成签到,获得积分10
5秒前
高高浩然完成签到,获得积分10
6秒前
陈晚拧发布了新的文献求助10
6秒前
6秒前
nash发布了新的文献求助50
7秒前
iNk应助shenwei采纳,获得20
7秒前
乐乐应助鱼鱼鱼采纳,获得10
8秒前
大模型应助光亮中道采纳,获得10
8秒前
gjy完成签到,获得积分10
8秒前
8秒前
水木公发布了新的文献求助10
9秒前
司纤户羽发布了新的文献求助10
9秒前
冷艳莛发布了新的文献求助10
10秒前
10秒前
Jeson完成签到,获得积分10
10秒前
请叫我风吹麦浪应助LQ采纳,获得10
11秒前
Yongjiang发布了新的文献求助20
12秒前
Melody发布了新的文献求助10
12秒前
13秒前
科研通AI5应助TL采纳,获得10
13秒前
13秒前
ywr发布了新的文献求助10
13秒前
酷酷嵩发布了新的文献求助50
14秒前
云中子发布了新的文献求助10
14秒前
yang完成签到,获得积分20
14秒前
小蘑菇应助科研小白采纳,获得10
15秒前
15秒前
安静凡旋发布了新的文献求助10
15秒前
smile完成签到,获得积分20
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561145
求助须知:如何正确求助?哪些是违规求助? 3134912
关于积分的说明 9410275
捐赠科研通 2835309
什么是DOI,文献DOI怎么找? 1558420
邀请新用户注册赠送积分活动 728160
科研通“疑难数据库(出版商)”最低求助积分说明 716722