多项式核
径向基函数核
分布的核嵌入
变核密度估计
核(代数)
字符串内核
树核
核主成分分析
核方法
人工智能
模式识别(心理学)
计算机科学
数学
核更平滑
乙状窦函数
支持向量机
离散数学
人工神经网络
作者
Anna Wang,Yue Zhao,Hou Yun-tao,L I Yun-lu
标识
DOI:10.1109/iclsim.2010.5461210
摘要
SVM (Support Vector Machines) is the most advanced machine learning algorithm in the field of pattern recognition. The selection of kernel functions will have a direct impact on the performance of SVM. This paper analyzed Linear kernel function, Polynomial kernel function, Radial basis function (RBF), Sigmoid kernel function, Fourier kernel function, B-spline kernel function and Wavelet kernel function, seven types of common kernel functions, and it adopted a new kernel function-compound kernel function. The novel kernel function combines three types of common kernel functions and has better generalization ability and better learning ability. Experimental results show the superiority of the compound kernel function.
科研通智能强力驱动
Strongly Powered by AbleSci AI