纳米材料
纳米晶
纳米技术
材料科学
模板
动力控制
纳米结构
催化作用
化学
有机化学
作者
Brandon J. Beberwyck,Yogesh Surendranath,A. Paul Alivisatos
摘要
The development of nanomaterials for next generation photonic, optoelectronic, and catalytic applications requires a robust synthetic toolkit for systematically tuning composition, phase, and morphology at nanometer length scales. While de novo synthetic methods for preparing nanomaterials from molecular precursors have advanced considerably in recent years, postsynthetic modifications of these preformed nanostructures have enabled the stepwise construction of complex nanomaterials. Among these postsynthetic transformations, cation exchange reactions, in which the cations ligated within a nanocrystal host lattice are substituted with those in solution, have emerged as particularly powerful tools for fine-grained control over nanocrystal composition and phase. In this feature article, we review the fundamental thermodynamic and kinetic basis for cation exchange reactions in colloidal semiconductor nanocrystals and highlight its synthetic versatility for accessing nanomaterials intractable by direct synthetic methods from molecular precursors. Unlike analogous ion substitution reactions in extended solids, cation exchange reactions at the nanoscale benefit from rapid reaction rates and facile modulation of reaction thermodynamics via selective ion coordination in solution. The preservation of the morphology of the initial nanocrystal template upon exchange, coupled with stoichiometric control over the extent of reaction, enables the formation of nanocrystals with compositions, morphologies, and crystal phases that are not readily accessible by conventional synthetic methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI