ISSLS prize winner: microstructure and mechanical disruption of the lumbar disc annulus: part II: how the annulus fails under hydrostatic pressure.

环空(植物学) 椎间盘 机械 椎间盘
作者
Samuel P. Veres,Peter A. Robertson,Neil D. Broom
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:33 (25): 2711-2720 被引量:63
标识
DOI:10.1097/brs.0b013e31817bb906
摘要

Study design Mechanically induced annular disruption of lumbar intervertebral discs followed by microstructural investigation. Objective To investigate the role that elevated nuclear pressures play in disrupting the lumbar intervertebral disc's annulus fibrosus. Summary of background data Compound mechanical loadings have been used to recreate clinically relevant annular disruptions in vitro. However, the role that individual loading parameters play in disrupting the lumbar disc's annulus remains unclear. Methods The nuclei of ovine lumbar intervertebral discs were gradually pressurized by injecting a viscous radio-opaque gel via their inferior vertebrae. Pressurization was conducted until catastrophic failure of the disc occurred. Investigation of the resulting annular disruption was carried out using microcomputed tomography and differential interference contrast microscopy. Results Gel extrusion from the posterior annulus was the most common mode of disc failure. Unlike other aspects of the annular wall, the posterior region was unable to distribute hydrostatic pressures circumferentially. In each extrusion case, severe disruption of the posterior annulus occurred. Although intralamellar disruption occurred in the mid annulus, interlamellar disruption occurred in the outer posterior annulus. Radial ruptures between lamellae always occurred in the mid-axial plane. Conclusion With respect to the annular wall, the posterior region is most susceptible to failure in the presence of high nuclear pressure, even when loaded in the neutral position. Weak interlamellar cohesion of the outer posterior lamellae may explain why the majority of herniations remain contained as protrusions within the outer annular wall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慈祥的翠桃关注了科研通微信公众号
1秒前
1秒前
宋美美完成签到,获得积分20
1秒前
Pweni应助zhang08采纳,获得30
2秒前
2秒前
JohnathanMWu完成签到,获得积分10
3秒前
3秒前
4秒前
han发布了新的文献求助10
4秒前
冷静破茧发布了新的文献求助10
7秒前
1592541发布了新的文献求助10
7秒前
張肉肉发布了新的文献求助10
7秒前
爱大美发布了新的文献求助10
8秒前
吃土豆的番茄完成签到,获得积分10
11秒前
Charail发布了新的文献求助10
12秒前
驴肉火烧完成签到,获得积分10
14秒前
14秒前
善学以致用应助SSS采纳,获得10
14秒前
英俊的铭应助han采纳,获得10
15秒前
驴肉火烧发布了新的文献求助10
16秒前
17秒前
天天快乐应助pupi采纳,获得10
18秒前
FLMXene完成签到,获得积分10
18秒前
19秒前
19秒前
For发布了新的文献求助10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
hucchongzi应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
20秒前
hucchongzi应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
hucchongzi应助科研通管家采纳,获得10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234027
求助须知:如何正确求助?哪些是违规求助? 2880431
关于积分的说明 8215492
捐赠科研通 2547980
什么是DOI,文献DOI怎么找? 1377371
科研通“疑难数据库(出版商)”最低求助积分说明 647869
邀请新用户注册赠送积分活动 623248