数学
简并能级
奇点
扩散
数学分析
先验与后验
非线性系统
先验估计
引力奇点
航程(航空)
抛物型偏微分方程
有限体积法
奇点理论
物理
机械
偏微分方程
量子力学
认识论
哲学
复合材料
材料科学
作者
Zhi‐An Wang,Michael Winkler,Dariusz Wrzosek
出处
期刊:Nonlinearity
[IOP Publishing]
日期:2011-10-28
卷期号:24 (12): 3279-3297
被引量:24
标识
DOI:10.1088/0951-7715/24/12/001
摘要
A parabolic–elliptic model of chemotaxis which takes into account volume-filling effects is considered under the assumption that there is an a priori threshold for the cell density. For a wide range of nonlinear diffusion operators including singular and degenerate ones it is proved that if the taxis force is strong enough with respect to diffusion and the initial data are chosen properly then there exists a classical solution which reaches the threshold at the maximal time of its existence, no matter whether the latter is finite or infinite. Moreover, we prove that the threshold may even be reached in finite time provided the diffusion of cells is non-degenerate.
科研通智能强力驱动
Strongly Powered by AbleSci AI