介孔材料
沸石
微型多孔材料
催化作用
化学工程
材料科学
肺表面活性物质
结晶
热液循环
吸附
化学
分子筛
有机化学
工程类
作者
Kanghee Cho,Hae Sung Cho,Louis-Charles de Ménorval,Ryong Ryoo
摘要
Hydrothermal crystallization of LTA zeolite was performed at a gel composition containing organosilane surfactant as a mesopore-generating agent. The zeolite was constructed of microporous crystalline zeolite frameworks that were penetrated by a three-dimensional disordered network of mesopores. Pore size analysis showed a gradual shift from 6 to 10 nm as the amount of the surfactant was increased. The detailed study indicated that the mesopores were templated by the organosilane surfactant, where the micelles were expanded by the excessive organosilane. Pore diameters could be further expanded to 24 nm by the addition of EO20PO70EO20 triblock copolymers as pore-expanding agents. Xenon uptake and 129Xe NMR measurements at 297 K revealed that the xenon diffusion into the highly mesoporous LTA zeolite could occur 200 times more rapidly compared with that of a solely microporous zeolite. The two zeolites showed a dramatic difference in product selectivity, catalytic activity, and lifetime, when they were compared after Ca2+ ion exchange as a catalyst for the conversion of methanol to dimethyl ether and hydrocarbons. These results are attributed to rapid transport into and out of the zeolitic micropores via mesopores. Fully open micropore−mesopore connectivity would make such hierarchically porous zeolites very attractive for applications in adsorption and catalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI