基因组
基因组
计算生物学
DNA测序
生物
顺序装配
计算机科学
遗传学
基因
基因表达
转录组
作者
Longhao Jia,Yingjian Wu,Yanqi Dong,Jingchao Chen,Weihua Chen,Xing‐Ming Zhao
摘要
Recovering high-quality metagenome-assembled genomes (HQ-MAGs) is critical for exploring microbial compositions and microbe-phenotype associations. However, multiple sequencing platforms and computational tools for this purpose may confuse researchers and thus call for extensive evaluation. Here, we systematically evaluated a total of 40 combinations of popular computational tools and sequencing platforms (i.e. strategies), involving eight assemblers, eight metagenomic binners and four sequencing technologies, including short-, long-read and metaHiC sequencing. We identified the best tools for the individual tasks (e.g. the assembly and binning) and combinations (e.g. generating more HQ-MAGs) depending on the availability of the sequencing data. We found that the combination of the hybrid assemblies and metaHiC-based binning performed best, followed by the hybrid and long-read assemblies. More importantly, both long-read and metaHiC sequencings link more mobile elements and antibiotic resistance genes to bacterial hosts and improve the quality of public human gut reference genomes with 32% (34/105) HQ-MAGs that were either of better quality than those in the Unified Human Gastrointestinal Genome catalog version 2 or novel.
科研通智能强力驱动
Strongly Powered by AbleSci AI