Multi-MCCR: Multiple models regularization for semi-supervised text classification with few labels

计算机科学 正规化(语言学) 人工智能 随机性 机器学习 推论 Kullback-Leibler散度 最大熵原理 对比度(视觉) 分类 一致性(知识库) 交叉熵 模式识别(心理学) 数学 统计
作者
Nai Zhou,Nianmin Yao,Qibin Li,Jian Zhao,Yanan Zhang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:272: 110588-110588 被引量:3
标识
DOI:10.1016/j.knosys.2023.110588
摘要

Semi-supervised learning has achieved impressive results and is commonly applied in text classifications. However, in situations where labeled texts are exceedingly limited, neural networks are prone to over-fitting due to the non-negligible inconsistency between model training and inference caused by dropout mechanisms that randomly mask some neurons. To alleviate this inconsistency problem, we propose a simple Multiple Models Contrast learning based on Consistent Regularization, named Multi-MCCR, which consists of multiple models with the same structure and a C-BiKL loss strategy. Specifically, one sample first goes through multiple identical models to obtain multiple different output distributions, which enriches the sample output distributions and provides conditions for subsequent consistency approximation. Then, the C-BiKL loss strategy is proposed to minimize the combination of the bidirectional Kullback−−Leibler (BiKL) divergence between the above multiple output distributions and the Cross-Entropy loss on labeled data, which provides consistency constraints (BiKL) for the model and simultaneously ensures correct classification (Cross-Entropy). Through the above setting of multi-model contrast learning, the inconsistency caused by the randomness of dropout between model training and inference is alleviated, thereby avoiding over-fitting and improving the classification ability in scenarios with limited labeled samples. We conducted experiments on six widely-used text classification datasets, including sentiment analysis, topic categorization, and reviews classification, and the experimental results show that our method is universally effective in semi-supervised text classification with limited labeled texts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助微笑的天薇采纳,获得10
刚刚
易只瑜完成签到,获得积分20
刚刚
莫寻雪完成签到,获得积分10
2秒前
宁琳发布了新的文献求助10
2秒前
miumiu发布了新的文献求助10
3秒前
3秒前
posh完成签到 ,获得积分10
3秒前
Grtin发布了新的文献求助10
5秒前
6秒前
不复返的杆完成签到 ,获得积分10
7秒前
7秒前
bilibala完成签到,获得积分10
8秒前
8秒前
Ji发布了新的文献求助10
9秒前
打打应助jin采纳,获得10
9秒前
9秒前
烈日骄阳完成签到,获得积分10
9秒前
宁琳完成签到,获得积分10
10秒前
徐裘发布了新的文献求助10
12秒前
香蕉觅云应助恩赐解脱采纳,获得10
12秒前
坦率抽屉完成签到 ,获得积分10
13秒前
13秒前
11632完成签到,获得积分20
14秒前
14秒前
ZR完成签到,获得积分10
14秒前
J卡卡K完成签到 ,获得积分10
15秒前
深情安青应助lcy采纳,获得10
15秒前
111111111发布了新的文献求助20
15秒前
温暖的数据线完成签到 ,获得积分10
16秒前
lpj完成签到,获得积分10
16秒前
16秒前
16秒前
EMMA完成签到,获得积分10
16秒前
科研通AI2S应助weiwei采纳,获得10
16秒前
Ji完成签到,获得积分10
17秒前
18秒前
19秒前
寄托完成签到 ,获得积分10
19秒前
19秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143506
求助须知:如何正确求助?哪些是违规求助? 2794865
关于积分的说明 7812588
捐赠科研通 2450967
什么是DOI,文献DOI怎么找? 1304178
科研通“疑难数据库(出版商)”最低求助积分说明 627193
版权声明 601386