Predicting lymph node metastasis from primary tumor histology and clinicopathologic factors in colorectal cancer using deep learning

逻辑回归 结直肠癌 人工智能 医学 机器学习 阶段(地层学) 试验装置 深度学习 淋巴结 转移 肿瘤科 淋巴结转移 内科学 癌症 计算机科学 古生物学 生物
作者
Justin D. Krogue,Shekoofeh Azizi,Fraser Elisabeth Tan,Isabelle Flament-Auvigne,Trissia Brown,Markus Plass,Robert Reihs,Heimo Müller,Kurt Zatloukal,Pema Richeson,Greg S. Corrado,Lily Peng,Craig H. Mermel,Yun Liu,Po-Hsuan Cameron Chen,Saurabh Gombar,Thomas J. Montine,Jeanne Shen,David F. Steiner,Ellery Wulczyn
出处
期刊:Communications medicine [Springer Nature]
卷期号:3 (1) 被引量:7
标识
DOI:10.1038/s43856-023-00282-0
摘要

Presence of lymph node metastasis (LNM) influences prognosis and clinical decision-making in colorectal cancer. However, detection of LNM is variable and depends on a number of external factors. Deep learning has shown success in computational pathology, but has struggled to boost performance when combined with known predictors.Machine-learned features are created by clustering deep learning embeddings of small patches of tumor in colorectal cancer via k-means, and then selecting the top clusters that add predictive value to a logistic regression model when combined with known baseline clinicopathological variables. We then analyze performance of logistic regression models trained with and without these machine-learned features in combination with the baseline variables.The machine-learned extracted features provide independent signal for the presence of LNM (AUROC: 0.638, 95% CI: [0.590, 0.683]). Furthermore, the machine-learned features add predictive value to the set of 6 clinicopathologic variables in an external validation set (likelihood ratio test, p < 0.00032; AUROC: 0.740, 95% CI: [0.701, 0.780]). A model incorporating these features can also further risk-stratify patients with and without identified metastasis (p < 0.001 for both stage II and stage III).This work demonstrates an effective approach to combine deep learning with established clinicopathologic factors in order to identify independently informative features associated with LNM. Further work building on these specific results may have important impact in prognostication and therapeutic decision making for LNM. Additionally, this general computational approach may prove useful in other contexts.When colorectal cancers spread to the lymph nodes, it can indicate a poorer prognosis. However, detecting lymph node metastasis (spread) can be difficult and depends on a number of factors such as how samples are taken and processed. Here, we show that machine learning, which involves computer software learning from patterns in data, can predict lymph node metastasis in patients with colorectal cancer from the microscopic appearance of their primary tumor and the clinical characteristics of the patients. We also show that the same approach can predict patient survival. With further work, our approach may help clinicians to inform patients about their prognosis and decide on appropriate treatments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
稳重银耳汤完成签到,获得积分20
5秒前
6秒前
6秒前
共享精神应助ZLY采纳,获得10
7秒前
tuanheqi应助王也采纳,获得80
8秒前
追寻的可仁完成签到,获得积分10
8秒前
mulidexin2021发布了新的文献求助10
10秒前
Jasper应助恶恶么v采纳,获得10
13秒前
冰激凌的迎彤完成签到,获得积分10
15秒前
Lucifer完成签到,获得积分10
17秒前
嘿嘿完成签到,获得积分10
17秒前
23xyke完成签到,获得积分10
17秒前
19秒前
19秒前
20秒前
Qn完成签到,获得积分10
20秒前
win发布了新的文献求助30
24秒前
dichloro完成签到,获得积分10
25秒前
Qn发布了新的文献求助10
26秒前
chen完成签到,获得积分10
26秒前
贤惠的白开水完成签到 ,获得积分10
27秒前
LL完成签到,获得积分10
28秒前
花的微笑完成签到,获得积分10
29秒前
mzc完成签到 ,获得积分10
29秒前
pan完成签到 ,获得积分10
30秒前
Orange应助满意非笑采纳,获得10
31秒前
掉渣的饼干完成签到,获得积分10
31秒前
科研通AI2S应助慕梦安采纳,获得10
39秒前
BBB完成签到,获得积分10
41秒前
win完成签到,获得积分20
41秒前
隐形曼青应助努力毕业、采纳,获得10
46秒前
zjf完成签到,获得积分10
46秒前
搜集达人应助浏阳河采纳,获得10
46秒前
47秒前
互助遵法尚德应助墨墨采纳,获得10
47秒前
JxJ完成签到,获得积分10
47秒前
所所应助123采纳,获得10
48秒前
51秒前
52秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155941
求助须知:如何正确求助?哪些是违规求助? 2807235
关于积分的说明 7872173
捐赠科研通 2465563
什么是DOI,文献DOI怎么找? 1312264
科研通“疑难数据库(出版商)”最低求助积分说明 629977
版权声明 601905