清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Temperature sensitivity of the interspecific interaction strength of coastal marine fish communities

种间竞争 生态系统 生态学 气候变化 海洋生态系统 生物 环境科学 渔业
作者
Masayuki Ushio,Testuya Sado,Takehiko Fukuchi,Sachia Sasano,Reiji Masuda,Yutaka Osada,Masaki Miya
出处
期刊:eLife [eLife Sciences Publications Ltd]
卷期号:12 被引量:8
标识
DOI:10.7554/elife.85795
摘要

The effects of temperature on interaction strengths are important for understanding and forecasting how global climate change impacts marine ecosystems; however, tracking and quantifying interactions of marine fish species are practically difficult especially under field conditions, and thus, how temperature influences their interaction strengths under field conditions remains poorly understood. We herein performed quantitative fish environmental DNA (eDNA) metabarcoding on 550 seawater samples that were collected twice a month from 11 coastal sites for 2 years in the Boso Peninsula, Japan, and analyzed eDNA monitoring data using nonlinear time series analytical tools. We detected fish-fish interactions as information flow between eDNA time series, reconstructed interaction networks for the top 50 frequently detected species, and quantified pairwise, fluctuating interaction strengths. Although there was a large variation, water temperature influenced fish-fish interaction strengths. The impact of water temperature on interspecific interaction strengths varied among fish species, suggesting that fish species identity influences the temperature effects on interactions. For example, interaction strengths that Halichoeres tenuispinis and Microcanthus strigatus received strongly increased with water temperature, while those of Engraulis japonicus and Girella punctata decreased with water temperature. An increase in water temperature induced by global climate change may change fish interactions in a complex way, which consequently influences marine community dynamics and stability. Our research demonstrates a practical research framework to study the effects of environmental variables on interaction strengths of marine communities in nature, which would contribute to understanding and predicting natural marine ecosystem dynamics.The world’s oceans are home to tens of thousands of fish species, many of which live in nutrient-rich coastal waters. Different species living in a particular environment interact with each other in many ways. For example, a predatory fish may prey on some species of small fish but avoid feeding on others that help it by removing parasites from its skin. Rising ocean temperatures caused by global climate change could affect how different fish species interact with one another and, as a result, impact their communities. One of the first steps to understanding how fish interact with each other in nature typically requires researchers to count the number of different species present and observe how they behave, which is time-consuming and labor-intensive. An alternative is to use an emerging technique in which researchers extract DNA from water, soil or air – known as environmental DNA – and analyze it to identify the species present and estimate their numbers. Ushio et al. analyzed hundreds of samples of seawater that had been collected over a two-year period from the Boso Peninsula in Japan. Statistical methods were used to quantify how strongly fish species interact with each other and determine whether the temperature of the water influenced how different species of fish interacted over time. The findings showed that water temperature had a significant but complex effect on how strongly pairs of fish species interacted, with both positive and negative effects depending on the conditions. The impact of water temperature on the strength of the interactions varied between species, for example, Japanese anchovy and largescale blackfish interacted less strongly with other fish species in warmer water, whereas the Stripey and a species of wrasse interacted with other fish species more strongly. The findings provide new insights into how water temperature affects the communities of fish living in coastal areas. Alongside complementing existing knowledge in the field, refining the research framework used in this work will benefit those working in fishery science by providing valuable insights into how natural and commercially important fish species respond to climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
47秒前
卡卡罗特先森完成签到 ,获得积分10
1分钟前
波西米亚完成签到,获得积分10
1分钟前
wuhu完成签到 ,获得积分10
1分钟前
迅速的幻雪完成签到 ,获得积分10
1分钟前
huanghe完成签到,获得积分10
2分钟前
香蕉觅云应助百里幻竹采纳,获得10
3分钟前
勤劳的颤完成签到 ,获得积分10
3分钟前
3分钟前
百里幻竹发布了新的文献求助10
3分钟前
coolplex完成签到 ,获得积分10
3分钟前
薛家泰完成签到 ,获得积分10
4分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
4分钟前
123321完成签到 ,获得积分10
5分钟前
迷茫的一代完成签到,获得积分10
5分钟前
beihaik完成签到 ,获得积分10
6分钟前
科研通AI6应助快乐陶采纳,获得10
6分钟前
小马甲应助科研通管家采纳,获得10
6分钟前
龙猫爱看书完成签到,获得积分10
7分钟前
7分钟前
Benhnhk21完成签到,获得积分10
7分钟前
7分钟前
快乐陶发布了新的文献求助10
7分钟前
8分钟前
面汤完成签到 ,获得积分10
8分钟前
Unlisted发布了新的文献求助30
8分钟前
9分钟前
西山菩提完成签到,获得积分10
9分钟前
快乐陶完成签到,获得积分10
9分钟前
9分钟前
10分钟前
Dreamhappy完成签到,获得积分10
10分钟前
mzhang2完成签到 ,获得积分10
10分钟前
缥缈的背包完成签到 ,获得积分10
10分钟前
披着羊皮的狼完成签到 ,获得积分10
10分钟前
默存完成签到,获得积分10
11分钟前
11分钟前
郑琦敏钰完成签到 ,获得积分10
11分钟前
zpl完成签到 ,获得积分10
11分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582666
求助须知:如何正确求助?哪些是违规求助? 4000312
关于积分的说明 12382338
捐赠科研通 3675384
什么是DOI,文献DOI怎么找? 2025814
邀请新用户注册赠送积分活动 1059475
科研通“疑难数据库(出版商)”最低求助积分说明 946145