Thermally assisted efficient electrochemical lithium extraction from simulated seawater

锂(药物) 电化学 萃取(化学) 海水 化学 环境科学 色谱法 电极 物理化学 医学 海洋学 地质学 内分泌学
作者
Yanxi Yu,Ziwen Yuan,Zixun Yu,Cheng Wang,Xia Zhong,Wei Li,Yuanyuan Yao,Xiao Sui,Dong Suk Han,Yuan Chen
出处
期刊:Water Research [Elsevier]
卷期号:223: 118969-118969 被引量:41
标识
DOI:10.1016/j.watres.2022.118969
摘要

Extracting lithium electrochemically from seawater has the potential to resolve any future lithium shortage. However, electrochemical extraction only functions efficiently in high lithium concentration solutions. Herein, we discovered that lithium extraction is temperature and concentration dependent. Lithium extraction capacity (i.e., the mass of lithium extracted from the source solutions) and speed (i.e., the lithium extraction rate) in electrochemical extraction can be increased significantly in heated source solutions, especially at low lithium concentrations (e.g., < 3 mM) and high Na+/Li+ molar ratios (e.g., >1000). Comprehensive material characterization and mechanistic analyses revealed that the improved lithium extraction originates from boosted kinetics rather than thermodynamic equilibrium shifts. A higher temperature (i.e., 60 oC) mitigates the activation polarization of lithium intercalation, decreases charge transfer resistances, and improves lithium diffusion. Based on these understandings, we demonstrated that a thermally assisted electrochemical lithium extraction process could achieve rapid (36.8 mg g-1 day-1) and selective (51.79% purity) lithium extraction from simulated seawater with an ultrahigh Na+/Li+ molar ratio of 20,000. The integrated thermally regenerative electrochemical cycle can harvest thermal energy in heated source solutions, enabling a low electrical energy consumption (11.3-16.0 Wh mol-1 lithium). Furthermore, the coupled thermal-driven membrane process in the system can also produce freshwater (13.2 kg m-2 h-1) as a byproduct. Given abundant low-grade thermal energy availability, the thermally assisted electrochemical lithium extraction process has excellent potential to realize mining lithium from seawater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
空白完成签到,获得积分10
1秒前
深情安青应助vidi采纳,获得10
3秒前
4秒前
4秒前
5秒前
脑洞疼应助紫薇采纳,获得10
5秒前
归尘应助紫薇采纳,获得10
5秒前
丘比特应助紫薇采纳,获得10
5秒前
小马甲应助紫薇采纳,获得10
5秒前
在水一方应助紫薇采纳,获得10
5秒前
充电宝应助紫薇采纳,获得10
5秒前
科研通AI2S应助紫薇采纳,获得10
5秒前
bkagyin应助紫薇采纳,获得10
5秒前
斯文败类应助紫薇采纳,获得10
5秒前
所所应助紫薇采纳,获得10
5秒前
5秒前
白立轩完成签到,获得积分10
6秒前
7秒前
ww发布了新的文献求助10
8秒前
SciGPT应助紧张的惜梦采纳,获得10
8秒前
强健的元冬完成签到,获得积分20
8秒前
8秒前
9秒前
清秀忆枫完成签到,获得积分10
9秒前
10秒前
11秒前
Jasper应助个性的荆采纳,获得10
11秒前
徐进发布了新的文献求助10
11秒前
yh发布了新的文献求助40
12秒前
dyjjudy完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
科研通AI6应助XXDY采纳,获得10
14秒前
二胡儿完成签到,获得积分10
14秒前
完美世界应助祝你开心采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901